Branched Ag Nanoplates: Synthesis Dictated by Suppressing Surface Diffusion and Catalytic Activity for Nitrophenol Reduction

Taixing Tan,^a^c Shun Zhang^b^ and Cheng Wang^b^

^a^ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.

^b^ Institute for New-Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. E-mail: cwang@tjut.edu.cn

^c^ University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
Figure S1: the TEM images of branched Ag nanoplates obtained with adding different amount of AgNO₃: (a) 0.5mL, (b) 1.0mL, (c) 1.5mL. (d) The relationship between growth length and volume of AgNO₃.
Figure S2. (a) Branched Ag nanoplates was obtained at 0°C without changing other conditions. (b) Round Ag nanoplates was produced in the absence of Cu(NO3)2 and at 0°C.