Supplementary Information

In-situ Synchrotron X-ray Diffraction Study of Coherently Embedded Silver Nanostructures Growth in Silicon

Puspendu Guha,1,2,# Raghavendra Rao Juluri,1,3,4,# Anjan Bhukta,1,3,4 Arnab Ghosh,1,5 Santanu Maiti,6,7 Arpan Bhattacharyya,2,6 Velaga Srihari8 and Parlapalli V Satyam1,2,*

1Institute of Physics, Sachivalaya Marg, Bhubaneswar - 751005, India.
2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai - 400085, India.
3Interdisciplinary Nanoscience Center, Aarhus University, Aarhus,Denmark - 8000.
4International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
5Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
6Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata - 700064, India.
7Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10,Tübingen - 72076, Germany.
8High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, India.

#These authors contributed equally to this work.

*Email: pvsatyam22@gmail.com, satyam@iopb.res.in, raghavavaphy@gmail.com
Tel.: +91-674-2306413 (Work), +91-943-755-8903 (Mobile), Fax: +91-674-2300142.
Figure S1: (a) Schematic representation for in-situ annealing and cooling of 17 nm GeO$_x$/SiO$_x$/Si(100) sample with two silver wires kept close to the sample (*CVD case*). (b) Schematic diagram of the experimental procedure followed during annealing in *CVD case*.
Figure S2: (a) and (b) High magnification SEM image and cross-sectional TEM image of the sample (CVD case) after in-situ annealing, confirming the formation of endotaxial silver nanostructures.
Figure S3: Schematic diagrams of the experimental procedures (a) followed during heating and cooling of 2 nm Ag/17 nm GeO$_x$/SiO$_x$/Si(100) sample; schematics of experiments followed during in-situ annealing of (b) 2 nm Ag/17 nm GeO$_x$/SiO$_x$/Si(100), (c) 18 ML Ag/17 nm GeO$_x$/SiO$_x$/Si(110) and (d) 2 nm Ag/17 nm GeO$_x$/SiO$_x$/Si(111) samples.
Figure S4: Typical SEM images of endotaxial Ag nanostructures formed at (a) 750 °C and (c) 800 °C (CVD case) and (b) 750 °C and (d) 800 °C (PVD case).
Figure S5: Size distribution of endotaxial Ag nanostructures formed at (a) 750 °C and (c) 800 °C (CVD case) and (b) 750 °C and (d) 800 °C (PVD case).
Figure S6: Low magnification cross-sectional TEM image of 2 nm Ag/17 nm GeOₓ/SiOₓ/Si(100) annealed at 600 °C in air for 30 min.