Supporting Information

Facile Synthesis and Heteroepitaxial Growth Mechanism of Au@Cu Core-Shell Bimetallic Nanocubes Probed by First-Principles Studies

Changshun Wang,*,a Junlong Li,a Yeke Lou,a Caixia Kan,*,a Yan Zhu,a Xiaoqin Feng,a Yuan Ni,a Haiying Xu,a,b Daning Shi*,a and Xinyuan Weic

*aCollege of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
bDepartment of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, P. R. China
cState Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences (MOE) & Department of Physics, Fudan University, Shanghai 200433, P. R. China

*Address correspondence to
Changshun Wang, Email address: changshun@nuaa.edu.cn
Caixia Kan, Email address: cxkan@nuaa.edu.cn
Daning Shi, Email address: shi@nuaa.edu.cn
Figure S1. Supercell for Au/Cu configuration in ball-stick format. Yellow and red balls represent Au and Cu atoms respectively. The z-axis is perpendicular to the xy-plane, a is the lengths of one crystal cell in z-direction, named as lattice constant.
Au and Cu Lattice Constants with DFT

The bulk Au and Cu lattice constants a were calculated using a face-centered cubic (fcc) primitive cell. For calculation of Au lattice constant, the cell built with different lattice constants ranging between 4.09 and 4.28 Å with the step of 0.01 Å. We used a (10×10×10) k-point grid for this primitive cell. We plotted the energy and the lattice constant and found 4.18 Å at the location where the corresponding bulk Au cohesive energy is $E_{\text{bulk-Au}} = -3.247$ eV. For calculation of Cu lattice constant, the cell built with different lattice constants ranging between 3.55 and 3.73 Å with the step of 0.01 Å. We also used a (10×10×10) k-point grid for this primitive cell. We plotted the energy and the lattice constant and found 3.64 Å at the location where the corresponding bulk Cu cohesive energy is $E_{\text{bulk-Cu}} = -3.704$ eV. These values are in exact agreement with previous PBE theoretical results.

![Figure S2](image_url). Calculation of bulk energy corresponding to different lattice constants: (A) for Au, (B) for Cu.
Figure S3. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the Cu precursor: (A) 10 mg, (B) 34 mg.
Figure S4. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the HDA: (A) 60 mg, (B) 180 mg.
Figure S5. TEM images of the as-obtained Au@Cu nanocrystals prepared at different amounts for the glucose: (A) 30 mg, (B) 90 mg.