Supporting information

Tailoring the structure and thermoelectric properties of BaTiO$_3$ via Eu$^{2+}$ substitution

Xingxing Xiao a, Marc Widenmeyer a, Wenjie Xie a, Tianhua Zou a, Songhak Yoon a, Marco Scavini b,d, Stefano Checchia b, Zhicheng Zhongc, Philipp Hansmannc, Stefan Kilper a, Andrei Kovalevsky e, Anke Weidenkaff a*

a University of Stuttgart, Institute for Materials Science, Heisenbergstr. 3, 70569 Stuttgart, Germany
b University of Milan, Chemistry Department, Via C. Golgi 19, I-20133 Milano, Italy,
c Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
d CNR-ISTM, Ist. Sci. & Tecnol. Mol., I-20133 Milan, Italy
e CICECO - Aveiro Institute of Materials, University of Aveiro, Department of Materials and Ceramic Engineering, 3810-193 Aveiro, Portugal

* Email: weidenkaff@imw.uni-stuttgart.de

Polar modes comprise all the symmetry-breaking atomic displacements causing ferroelectric transitions, normally cation off-centerings with respect to their coordination cage, which relate to the centre (Γ point) of the Brillouin zone; to non-polar modes, or zone-boundary modes (R point), belong, for example, the rotational modes that cause the antiferrodistortive transition in both EuTiO$_3$ and SrTiO$_3$. The I^e_4 transformation, which is responsible for the ferroelectric transition in BaTiO$_3$1, can lead to the space groups $P4mm$, $Ammm$, or $R3m$ depending on the direction of the order parameter, i.e. the off-centering of Ti or Ba/Eu. This means that an electric dipole could form, respectively, in the directions $<100>$, $<110>$, or $<111>$ with respect to the parent cubic structure.

A pure BaTiO$_3$ sample has been prepared and the transport properties have been evaluated under the same conditions as the substituted ones. Regarding the very large electrical resistivity of BaTiO$_3$ at room temperature, it was not possible to measure the electrical transport properties below 473 K with our ZEM measurement system. The electrical conductivity of BaTiO$_3$ was around 16 S/m at 1123 K, which is extremely lower than that of our Eu$^{2+}$ substituted samples. Compared with Eu$^{2+}$ substituted samples, BaTiO$_3$ sample possesses a much higher Seebeck coefficient in the entire investigated temperature range. The carrier concentration of BaTiO$_3$ was estimated to be 8.5×10^{18} cm$^{-3}$ at 1123 K according to Heikes formula, and the calculated carrier mobility was 0.13 cm2V$^{-1}$s$^{-1}$, which is consistent with reference data 2,3. As shown in Figure 1(a), the thermal conductivity of BaTiO$_3$ sample
possess a similar trend as $\text{Ba}_{1-x}\text{Eu}_x\text{TiO}_3$ ($x \leq 0.3$). The transition around 390 K is due to both a phase transition of tetragonal to cubic and a Curie transition. The lattice thermal conductivity of BaTiO_3 (Figure 2(b)) also follows the trend which we expected.

Fig. S1. Temperature dependence of the electrical conductivity (a) and Seebeck coefficient (b) of $\text{Ba}_{1-x}\text{Eu}_x\text{TiO}_3-\delta$ samples

Fig. S2. Temperature dependence of the thermal conductivity κ (a) and the lattice thermal conductivity κ_L (b) of $\text{Ba}_{1-x}\text{Eu}_x\text{TiO}_3-\delta$ as a function of the Eu$^{2+}$ content x and Ti–O distance at 323 K and 1123 K.

References