The shortest Th–Th distance from a new type of quadruple bond

Han-Shi Hu and Nikolas Kaltsoyannis
School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
Email: nikolas.kaltsoyannis@manchester.ac.uk

Supporting Information

Contents

I. Additional and computational details
II. Tables
III. \textit{xyz} coordinates and total SCF energies

I. Additional computational details

For calculations in the ADF 2014.01 program, the criteria of the grid size, SCF and geometry convergence are 6.0 (Accint), 1e-6 (SCFconv) and 1e-4 (TolE and TolG) and the others (TolR & TolA) were set as defaults. As Cy$_3$PThThPCy$_3$ and Ph$_3$PThThPPh$_3$ are rather large systems, Slater type orbital basis sets of double-zeta plus one polarization function (DZP) were used for the atoms of these two molecules except Th, for which TZP was used.

For calculations in the Molpro 2015.1 program, the global threshold for the smallest allowed eigenvalue of the overlap matrix (THROVL) was set as 1.d-9, all other parameters were employed at their default value. D$_{3d}$ symmetry was used for all \textit{ab initio} studies on H$_3$PThThPH$_3$, including CASPT2, CCSD(T) and SOC calculations. Although the D$_{3d}$ structure is not quite the most stable at the PBE level (0.54 kJ/mol less stable than the C$_1$ structure, with a small imaginary frequency of 21.2i cm$^{-1}$), high symmetry is so helpful for state specification in \textit{ab initio} calculations that we felt the constraint to D$_{3d}$ symmetry appropriate. The \textit{xyz} coordinates of both of the D$_{3d}$ and C$_1$ structures are given in Section III. Note that the Th–Th bond lengths are very similar between these two structures, 2.604 Å (D$_{3d}$) vs 2.607 Å (C$_1$).
II. Table

Table S1. An–An bond distances reported in the literature. See main text for the source reference numbers.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>An–An (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ac}_2)</td>
<td>3.64</td>
</tr>
<tr>
<td>(\text{Th}_2)</td>
<td>2.76</td>
</tr>
<tr>
<td>(\text{HThThH})</td>
<td>2.71</td>
</tr>
<tr>
<td>(\text{Pa}_2)</td>
<td>2.37</td>
</tr>
<tr>
<td>(\text{U}_2)</td>
<td>2.43</td>
</tr>
<tr>
<td>(\text{PhUUPh})</td>
<td>2.29</td>
</tr>
<tr>
<td>(\text{H}_2\text{UUH}_2)</td>
<td>2.28</td>
</tr>
<tr>
<td>(\text{U}(\mu\text{-H}_2)\text{U})</td>
<td>2.18</td>
</tr>
<tr>
<td>(\text{U}_2^{2+})</td>
<td>2.30</td>
</tr>
<tr>
<td>([\text{U}_2\text{X}_8]^{2-} \ (X = \text{Cl, Br}))</td>
<td>2.35</td>
</tr>
<tr>
<td>([\text{Np}_2\text{X}_8]^{2-} \ (X = \text{Cl, Br}))</td>
<td>2.20</td>
</tr>
<tr>
<td>([\text{Pu}_2\text{X}_8]^{2-} \ (X = \text{Cl, Br}))</td>
<td>2.08</td>
</tr>
<tr>
<td>(\text{U}_2\text{X}_6 (X = \text{Cl, F, OH, NH}_2, \text{CH}_3))</td>
<td>2.35, 2.38, 2.37, 2.35, 2.36</td>
</tr>
<tr>
<td>(\text{U}_2(\text{OCHO})_4)</td>
<td>2.33</td>
</tr>
<tr>
<td>(\text{U}_2(\text{OCHO})_6)</td>
<td>2.40</td>
</tr>
<tr>
<td>(\text{U}_2(\text{OCHO})_4\text{Cl}_2)</td>
<td>2.80</td>
</tr>
<tr>
<td>(\text{U}2@\text{C}{60})</td>
<td>2.72</td>
</tr>
<tr>
<td>(\text{An}_2(\text{C}_8\text{H}_8)_2) \ (An = \text{Th, Pa, U, Np})</td>
<td>2.81, 2.54, 2.24, 2.19</td>
</tr>
<tr>
<td>(\text{An}_2\text{Cp}^_2) \ (\text{Cp}^ = \text{C}_5(\text{CH}_3)_5, \text{An} = \text{Th, Pa, U, Np, Pu})</td>
<td>2.79, 2.37, 2.58, 2.78, 2.87</td>
</tr>
</tbody>
</table>
Table S2. The $\angle_{L\text{-Th-Th}}$ angles (°) and total bonding energies E (kJ/mol) of the optimised LThThL molecules. Also provided are the $\angle_{L\text{-Th-Th}}$ angles and energies for modified geometries, derived from the optimised geometries as follows. Starred structures are optimised with symmetry constraints that enforce linearity (e.g. D_{3d} for $H_3AsThThAsH_3$). For other compounds this approach did not lead to either SCF or geometry convergence, and hence the other angle data in the same column indicate structures based on the optimised geometries but fixing $\angle_{L\text{-Th-Th}}$ to be either linear (180°) or trans-bent (170°), depending on the angle in the fully optimised structure. The energy difference ΔE between the two forms is also given.

| Compounds | Optimised Geometry | | | | | |
|------------------|--------------------|-----------------|-----------------|-----------------|-----------------|
| | $\angle_{L\text{-Th-Th}}$ | E | $\angle_{L\text{-Th-Th}}$ | E | ΔE |
| $H_3AsThThAsH_3$ | 169.2 | -3387.49 | 180.0* | -3387.70 | 0.21 |
| $H_3PThThPH_3$ | 175.4 | -3626.69 | 180.0* | -3626.15 | -0.54 |
| $Me_3PThThPMe_3$ | 179.5 | -13339.22 | 170.0 | -13336.1 | -3.12 |
| Cy3PThThPCy3 | 176.2 | -56433.08 | 180.0 | -56432.40 | -0.68 |
| Ph3PThThPPh3 | 173.8 | -43077.79 | 180.0 | -43074.78 | -3.01 |
| $H_3NThThNH_3$ | 180.0 | -4451.27 | 170.0 | -4446.04 | -5.23 |
| NHCThThNHC | 177.9 | -11722.65 | 180.0* | -11722.56 | -0.09 |
| $H_2FPThThPFH_2$ | 169.4 | -3904.76 | 180.0 | -3901.16 | -3.60 |
| HF2PThThPF2H | 168.2 | -4194.84 | 180.0 | -4184.96 | -9.88 |
| OCThThCO | 180.0 | -3665.02 | 170.0 | -3663.43 | -1.59 |
| ONThThNO | 180.0 | -3487.95 | 170.0 | -3482.85 | -5.10 |
III. xyz coordinates (Å) and total SCF energies from DFT (PBE) optimisations of the studied compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>xyz coordinates (Å)</th>
<th>Total SCF energy (Hartree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_3\text{AsThThAsH}_3$</td>
<td>1. Th</td>
<td>0.016490</td>
</tr>
<tr>
<td></td>
<td>2. Th</td>
<td>-0.016490</td>
</tr>
<tr>
<td></td>
<td>3. As</td>
<td>0.052847</td>
</tr>
<tr>
<td></td>
<td>4. H</td>
<td>0.053225</td>
</tr>
<tr>
<td></td>
<td>5. H</td>
<td>-1.064935</td>
</tr>
<tr>
<td></td>
<td>6. H</td>
<td>1.196053</td>
</tr>
<tr>
<td></td>
<td>7. As</td>
<td>-0.052847</td>
</tr>
<tr>
<td></td>
<td>8. H</td>
<td>-0.053225</td>
</tr>
<tr>
<td></td>
<td>9. H</td>
<td>-1.196053</td>
</tr>
<tr>
<td></td>
<td>10. H</td>
<td>1.064935</td>
</tr>
<tr>
<td>$\text{H}_3\text{PThThPH}_3$</td>
<td>1. Th</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>2. Th</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>3. P</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>4. H</td>
<td>-1.059078</td>
</tr>
<tr>
<td></td>
<td>5. H</td>
<td>1.059078</td>
</tr>
<tr>
<td></td>
<td>6. H</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>7. P</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>8. H</td>
<td>1.059078</td>
</tr>
<tr>
<td></td>
<td>9. H</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>10. H</td>
<td>-1.059078</td>
</tr>
<tr>
<td>$\text{H}_3\text{PThThPH}_3$</td>
<td>1. Th</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>2. Th</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>3. P</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>4. H</td>
<td>-1.064321</td>
</tr>
<tr>
<td></td>
<td>5. H</td>
<td>1.064321</td>
</tr>
<tr>
<td></td>
<td>6. H</td>
<td>0.002390</td>
</tr>
<tr>
<td></td>
<td>7. P</td>
<td>0.003213</td>
</tr>
<tr>
<td></td>
<td>8. H</td>
<td>1.065566</td>
</tr>
<tr>
<td></td>
<td>9. H</td>
<td>-0.001573</td>
</tr>
<tr>
<td></td>
<td>10. H</td>
<td>-1.067290</td>
</tr>
<tr>
<td>$\text{Cy}_3\text{PThThPCy}_3$</td>
<td>1. P</td>
<td>-4.287251</td>
</tr>
<tr>
<td></td>
<td>2. Th</td>
<td>-1.301360</td>
</tr>
<tr>
<td></td>
<td>3. Th</td>
<td>1.303505</td>
</tr>
<tr>
<td></td>
<td>4. P</td>
<td>4.288553</td>
</tr>
<tr>
<td></td>
<td>5. C</td>
<td>5.019541</td>
</tr>
<tr>
<td></td>
<td>6. C</td>
<td>4.044833</td>
</tr>
<tr>
<td></td>
<td>7. C</td>
<td>5.313996</td>
</tr>
</tbody>
</table>

Notes:
- E represents the total SCF energy.
- The xyz coordinates are given in ångströms (Å).
- The compounds are named according to their structure.
- The energies are given in Hartree (Hart).
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>H</td>
<td>5.974</td>
<td>-1.782</td>
<td>-0.057</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>4.565</td>
<td>-4.183</td>
<td>-0.345</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>3.079</td>
<td>-2.628</td>
<td>-0.559</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>3.826</td>
<td>-2.683</td>
<td>1.043</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>5.831</td>
<td>-3.257</td>
<td>-2.313</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>4.385</td>
<td>-1.665</td>
<td>-2.571</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>6.057</td>
<td>-1.108</td>
<td>-2.336</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>4.862</td>
<td>-4.340</td>
<td>-1.838</td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>3.825</td>
<td>-4.933</td>
<td>-0.017</td>
</tr>
<tr>
<td>17</td>
<td>H</td>
<td>5.489</td>
<td>-4.371</td>
<td>0.234</td>
</tr>
<tr>
<td>18</td>
<td>H</td>
<td>6.011</td>
<td>-3.348</td>
<td>-3.398</td>
</tr>
<tr>
<td>19</td>
<td>H</td>
<td>6.809</td>
<td>-3.402</td>
<td>-1.815</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>5.273</td>
<td>-5.343</td>
<td>-2.048</td>
</tr>
<tr>
<td>21</td>
<td>H</td>
<td>3.916</td>
<td>-4.256</td>
<td>-2.405</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>-5.078</td>
<td>1.642</td>
<td>0.614</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>-5.374</td>
<td>1.704</td>
<td>2.121</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>-4.147</td>
<td>2.806</td>
<td>0.219</td>
</tr>
<tr>
<td>25</td>
<td>H</td>
<td>-6.038</td>
<td>1.746</td>
<td>0.068</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>-5.944</td>
<td>3.071</td>
<td>2.527</td>
</tr>
<tr>
<td>27</td>
<td>H</td>
<td>-4.436</td>
<td>1.521</td>
<td>2.682</td>
</tr>
<tr>
<td>28</td>
<td>H</td>
<td>-6.087</td>
<td>0.918</td>
<td>2.414</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>-4.724</td>
<td>4.168</td>
<td>0.619</td>
</tr>
<tr>
<td>30</td>
<td>H</td>
<td>-3.176</td>
<td>2.662</td>
<td>0.736</td>
</tr>
<tr>
<td>31</td>
<td>H</td>
<td>-3.927</td>
<td>2.788</td>
<td>-0.859</td>
</tr>
<tr>
<td>32</td>
<td>C</td>
<td>-5.021</td>
<td>4.219</td>
<td>2.119</td>
</tr>
<tr>
<td>33</td>
<td>H</td>
<td>-6.121</td>
<td>3.085</td>
<td>3.617</td>
</tr>
<tr>
<td>34</td>
<td>H</td>
<td>-6.930</td>
<td>3.207</td>
<td>2.044</td>
</tr>
<tr>
<td>35</td>
<td>H</td>
<td>-4.017</td>
<td>4.967</td>
<td>0.337</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>-5.658</td>
<td>4.352</td>
<td>0.054</td>
</tr>
<tr>
<td>37</td>
<td>H</td>
<td>-5.472</td>
<td>5.189</td>
<td>2.392</td>
</tr>
<tr>
<td>38</td>
<td>H</td>
<td>-4.070</td>
<td>4.139</td>
<td>2.678</td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td>5.011</td>
<td>1.211</td>
<td>-1.309</td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>4.181</td>
<td>2.499</td>
<td>-1.432</td>
</tr>
<tr>
<td>41</td>
<td>C</td>
<td>6.508</td>
<td>1.529</td>
<td>-1.173</td>
</tr>
<tr>
<td>42</td>
<td>H</td>
<td>4.864</td>
<td>0.661</td>
<td>-2.258</td>
</tr>
<tr>
<td>43</td>
<td>C</td>
<td>4.675</td>
<td>3.357</td>
<td>-2.603</td>
</tr>
<tr>
<td>44</td>
<td>H</td>
<td>4.242</td>
<td>3.095</td>
<td>-0.499</td>
</tr>
<tr>
<td>45</td>
<td>H</td>
<td>3.113</td>
<td>2.245</td>
<td>-1.575</td>
</tr>
<tr>
<td>46</td>
<td>C</td>
<td>6.995</td>
<td>2.386</td>
<td>-2.348</td>
</tr>
<tr>
<td>47</td>
<td>H</td>
<td>6.687</td>
<td>2.078</td>
<td>-0.233</td>
</tr>
<tr>
<td>48</td>
<td>H</td>
<td>7.102</td>
<td>0.596</td>
<td>-1.114</td>
</tr>
<tr>
<td>49</td>
<td>C</td>
<td>6.169</td>
<td>3.668</td>
<td>-2.479</td>
</tr>
<tr>
<td>50</td>
<td>H</td>
<td>4.089</td>
<td>4.391</td>
<td>-2.657</td>
</tr>
<tr>
<td>51</td>
<td>H</td>
<td>4.493</td>
<td>2.811</td>
<td>-3.549</td>
</tr>
<tr>
<td>52</td>
<td>H</td>
<td>8.064</td>
<td>2.627</td>
<td>-2.219</td>
</tr>
<tr>
<td>53</td>
<td>H</td>
<td>6.909</td>
<td>1.801</td>
<td>-3.284</td>
</tr>
<tr>
<td>54</td>
<td>H</td>
<td>6.511</td>
<td>4.255</td>
<td>-3.349</td>
</tr>
<tr>
<td>55</td>
<td>H</td>
<td>6.336</td>
<td>4.299</td>
<td>-1.584</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>56.C</td>
<td>-4.977921</td>
<td>-1.289068</td>
<td>1.231690</td>
<td></td>
</tr>
<tr>
<td>57.C</td>
<td>-6.462433</td>
<td>-1.642108</td>
<td>1.062733</td>
<td></td>
</tr>
<tr>
<td>58.C</td>
<td>-4.107260</td>
<td>-2.557157</td>
<td>1.279855</td>
<td></td>
</tr>
<tr>
<td>59.H</td>
<td>-4.853994</td>
<td>-0.797454</td>
<td>2.215776</td>
<td></td>
</tr>
<tr>
<td>60.C</td>
<td>-6.930187</td>
<td>-2.588778</td>
<td>2.176831</td>
<td></td>
</tr>
<tr>
<td>61.H</td>
<td>-6.615681</td>
<td>-2.140593</td>
<td>0.087925</td>
<td></td>
</tr>
<tr>
<td>62.H</td>
<td>-7.085061</td>
<td>-0.730202</td>
<td>1.055268</td>
<td></td>
</tr>
<tr>
<td>63.C</td>
<td>-4.581253</td>
<td>-3.499687</td>
<td>2.392511</td>
<td></td>
</tr>
<tr>
<td>64.H</td>
<td>-4.146002</td>
<td>-3.087935</td>
<td>0.312461</td>
<td></td>
</tr>
<tr>
<td>65.H</td>
<td>-3.048570</td>
<td>-2.280687</td>
<td>1.445788</td>
<td></td>
</tr>
<tr>
<td>66.C</td>
<td>-6.064135</td>
<td>-3.850155</td>
<td>2.237423</td>
<td></td>
</tr>
<tr>
<td>67.H</td>
<td>-7.990339</td>
<td>-2.856190</td>
<td>2.022034</td>
<td></td>
</tr>
<tr>
<td>68.H</td>
<td>-6.872291</td>
<td>-2.061086</td>
<td>3.148083</td>
<td></td>
</tr>
<tr>
<td>69.H</td>
<td>-3.966344</td>
<td>-4.416102</td>
<td>2.394439</td>
<td></td>
</tr>
<tr>
<td>70.H</td>
<td>-4.423289</td>
<td>-3.007722</td>
<td>3.371298</td>
<td></td>
</tr>
<tr>
<td>71.H</td>
<td>-6.393610</td>
<td>-4.499581</td>
<td>3.066867</td>
<td></td>
</tr>
<tr>
<td>72.H</td>
<td>-6.204140</td>
<td>-4.430274</td>
<td>1.304936</td>
<td></td>
</tr>
<tr>
<td>73.C</td>
<td>5.242125</td>
<td>0.407586</td>
<td>1.560896</td>
<td></td>
</tr>
<tr>
<td>74.C</td>
<td>4.840211</td>
<td>1.787057</td>
<td>2.108052</td>
<td></td>
</tr>
<tr>
<td>75.C</td>
<td>5.013679</td>
<td>-0.674045</td>
<td>2.630227</td>
<td></td>
</tr>
<tr>
<td>76.H</td>
<td>6.320288</td>
<td>0.418999</td>
<td>1.304218</td>
<td></td>
</tr>
<tr>
<td>77.C</td>
<td>5.559790</td>
<td>2.117303</td>
<td>3.421422</td>
<td></td>
</tr>
<tr>
<td>78.H</td>
<td>3.745352</td>
<td>1.795923</td>
<td>2.278971</td>
<td></td>
</tr>
<tr>
<td>79.H</td>
<td>5.045862</td>
<td>2.575302</td>
<td>1.366749</td>
<td></td>
</tr>
<tr>
<td>80.C</td>
<td>5.737459</td>
<td>-0.338082</td>
<td>3.940383</td>
<td></td>
</tr>
<tr>
<td>81.H</td>
<td>3.927159</td>
<td>-0.762028</td>
<td>2.827915</td>
<td></td>
</tr>
<tr>
<td>82.H</td>
<td>5.354878</td>
<td>-1.657774</td>
<td>2.268989</td>
<td></td>
</tr>
<tr>
<td>83.C</td>
<td>5.324744</td>
<td>1.034032</td>
<td>4.474788</td>
<td></td>
</tr>
<tr>
<td>84.H</td>
<td>5.219277</td>
<td>3.099413</td>
<td>3.793526</td>
<td></td>
</tr>
<tr>
<td>85.H</td>
<td>6.646395</td>
<td>2.208181</td>
<td>3.229023</td>
<td></td>
</tr>
<tr>
<td>86.H</td>
<td>5.530138</td>
<td>-1.122999</td>
<td>4.688604</td>
<td></td>
</tr>
<tr>
<td>87.H</td>
<td>6.830298</td>
<td>-0.346302</td>
<td>3.763456</td>
<td></td>
</tr>
<tr>
<td>88.H</td>
<td>5.877630</td>
<td>1.269565</td>
<td>5.400538</td>
<td></td>
</tr>
<tr>
<td>89.H</td>
<td>4.250293</td>
<td>1.012148</td>
<td>4.739429</td>
<td></td>
</tr>
<tr>
<td>90.C</td>
<td>-5.220093</td>
<td>-0.306618</td>
<td>-1.581272</td>
<td></td>
</tr>
<tr>
<td>91.C</td>
<td>-5.040592</td>
<td>0.858408</td>
<td>-2.569232</td>
<td></td>
</tr>
<tr>
<td>92.C</td>
<td>-4.753705</td>
<td>-1.623318</td>
<td>-2.223632</td>
<td></td>
</tr>
<tr>
<td>93.H</td>
<td>-6.296904</td>
<td>-0.385888</td>
<td>-1.331489</td>
<td></td>
</tr>
<tr>
<td>94.C</td>
<td>-5.744833</td>
<td>0.583980</td>
<td>-3.904040</td>
<td></td>
</tr>
<tr>
<td>95.H</td>
<td>-3.959088</td>
<td>1.011622</td>
<td>-2.753943</td>
<td></td>
</tr>
<tr>
<td>96.H</td>
<td>-5.429679</td>
<td>1.796027</td>
<td>-2.140326</td>
<td></td>
</tr>
<tr>
<td>97.C</td>
<td>-5.453997</td>
<td>-1.891157</td>
<td>-3.561353</td>
<td></td>
</tr>
<tr>
<td>98.H</td>
<td>-3.659303</td>
<td>-1.568772</td>
<td>-2.389480</td>
<td></td>
</tr>
<tr>
<td>99.H</td>
<td>-4.922960</td>
<td>-2.471456</td>
<td>-1.541409</td>
<td></td>
</tr>
<tr>
<td>100.C</td>
<td>-5.266904</td>
<td>-0.725277</td>
<td>-4.533079</td>
<td></td>
</tr>
<tr>
<td>101.H</td>
<td>-5.573214</td>
<td>1.429647</td>
<td>-4.592702</td>
<td></td>
</tr>
<tr>
<td>102.H</td>
<td>-6.837211</td>
<td>0.528083</td>
<td>-3.732990</td>
<td></td>
</tr>
<tr>
<td>103.H</td>
<td>-5.067265</td>
<td>-2.827055</td>
<td>-4.001099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>104.H</td>
<td>-6.535643</td>
<td>-2.045438</td>
<td>-3.382144</td>
<td></td>
</tr>
<tr>
<td>105.H</td>
<td>-5.805889</td>
<td>-0.919181</td>
<td>-5.476477</td>
<td></td>
</tr>
<tr>
<td>106.H</td>
<td>-4.194042</td>
<td>-0.634511</td>
<td>-4.789199</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Me}_3\text{PThThPMe}_3 (E= -5.08064138 \text{ Hartree}) \]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Th</td>
<td>-0.004095</td>
<td>-0.029420</td>
<td>1.300199</td>
</tr>
<tr>
<td>2.Th</td>
<td>-0.044397</td>
<td>0.012257</td>
<td>-1.300215</td>
</tr>
<tr>
<td>3.P</td>
<td>0.068051</td>
<td>-0.080293</td>
<td>4.295667</td>
</tr>
<tr>
<td>4.P</td>
<td>-0.081207</td>
<td>0.076665</td>
<td>-4.295966</td>
</tr>
<tr>
<td>5.C</td>
<td>-1.494647</td>
<td>0.962997</td>
<td>-5.109949</td>
</tr>
<tr>
<td>6.H</td>
<td>-2.438645</td>
<td>0.495854</td>
<td>-4.792351</td>
</tr>
<tr>
<td>7.H</td>
<td>-1.504326</td>
<td>2.008443</td>
<td>-4.766983</td>
</tr>
<tr>
<td>8.H</td>
<td>-1.413056</td>
<td>0.930952</td>
<td>-6.197325</td>
</tr>
<tr>
<td>9.C</td>
<td>-0.139551</td>
<td>-1.552167</td>
<td>-5.176248</td>
</tr>
<tr>
<td>10.H</td>
<td>0.736042</td>
<td>-2.149554</td>
<td>-4.891396</td>
</tr>
<tr>
<td>11.H</td>
<td>-1.041130</td>
<td>-2.097759</td>
<td>-4.869573</td>
</tr>
<tr>
<td>12.H</td>
<td>-0.148857</td>
<td>-1.46150</td>
<td>-6.267579</td>
</tr>
<tr>
<td>13.C</td>
<td>1.361742</td>
<td>0.879108</td>
<td>-5.135768</td>
</tr>
<tr>
<td>14.H</td>
<td>1.441027</td>
<td>1.921880</td>
<td>-4.802751</td>
</tr>
<tr>
<td>15.H</td>
<td>2.283959</td>
<td>0.357164</td>
<td>-4.849898</td>
</tr>
<tr>
<td>16.H</td>
<td>1.251776</td>
<td>0.852877</td>
<td>-6.229818</td>
</tr>
<tr>
<td>17.C</td>
<td>-1.318113</td>
<td>-0.951113</td>
<td>5.162834</td>
</tr>
<tr>
<td>18.H</td>
<td>-2.270434</td>
<td>-0.478434</td>
<td>4.890230</td>
</tr>
<tr>
<td>19.H</td>
<td>-1.349386</td>
<td>-1.998359</td>
<td>4.835896</td>
</tr>
<tr>
<td>20.H</td>
<td>-1.191602</td>
<td>-0.913371</td>
<td>6.254794</td>
</tr>
<tr>
<td>21.C</td>
<td>0.056791</td>
<td>1.553519</td>
<td>5.168673</td>
</tr>
<tr>
<td>22.H</td>
<td>0.923986</td>
<td>2.143382</td>
<td>4.845135</td>
</tr>
<tr>
<td>23.H</td>
<td>-0.852947</td>
<td>2.103795</td>
<td>4.896244</td>
</tr>
<tr>
<td>24.H</td>
<td>0.091045</td>
<td>1.422922</td>
<td>6.260230</td>
</tr>
<tr>
<td>25.C</td>
<td>1.537596</td>
<td>-0.889175</td>
<td>5.081390</td>
</tr>
<tr>
<td>26.H</td>
<td>1.597357</td>
<td>-1.933669</td>
<td>4.749635</td>
</tr>
<tr>
<td>27.H</td>
<td>2.451215</td>
<td>-0.374101</td>
<td>4.757971</td>
</tr>
<tr>
<td>28.H</td>
<td>1.470231</td>
<td>-0.858362</td>
<td>6.178799</td>
</tr>
</tbody>
</table>

\[\text{Ph}_3\text{PThThPPh}_3 (E= -16.40745734 \text{ Hartree}) \]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.P</td>
<td>-4.194856</td>
<td>-0.241288</td>
<td>-0.315895</td>
</tr>
<tr>
<td>2.Th</td>
<td>-1.297944</td>
<td>-0.125675</td>
<td>-0.182520</td>
</tr>
<tr>
<td>3.Th</td>
<td>1.297944</td>
<td>0.125675</td>
<td>0.182520</td>
</tr>
<tr>
<td>4.P</td>
<td>4.194856</td>
<td>0.241288</td>
<td>0.315895</td>
</tr>
<tr>
<td>5.C</td>
<td>5.111855</td>
<td>1.814374</td>
<td>-0.003757</td>
</tr>
<tr>
<td>6.C</td>
<td>4.519362</td>
<td>2.759049</td>
<td>-0.854119</td>
</tr>
<tr>
<td>7.C</td>
<td>6.348977</td>
<td>2.101997</td>
<td>0.586667</td>
</tr>
<tr>
<td>8.C</td>
<td>5.162765</td>
<td>3.963791</td>
<td>-1.127524</td>
</tr>
<tr>
<td>9.H</td>
<td>3.548755</td>
<td>2.539259</td>
<td>-1.310373</td>
</tr>
<tr>
<td>10.C</td>
<td>6.986755</td>
<td>3.313516</td>
<td>0.316862</td>
</tr>
<tr>
<td>11.H</td>
<td>6.812813</td>
<td>1.379183</td>
<td>1.260450</td>
</tr>
<tr>
<td>12.C</td>
<td>6.398645</td>
<td>4.243278</td>
<td>-0.541034</td>
</tr>
<tr>
<td>13.H</td>
<td>4.694872</td>
<td>4.690030</td>
<td>-1.795816</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>C</td>
<td>-5.364618</td>
<td>0.366158</td>
<td>2.215945</td>
</tr>
<tr>
<td>C</td>
<td>-4.193523</td>
<td>2.904091</td>
<td>2.304308</td>
</tr>
<tr>
<td>H</td>
<td>-3.462839</td>
<td>2.483191</td>
<td>0.317987</td>
</tr>
<tr>
<td>C</td>
<td>-5.534593</td>
<td>1.178383</td>
<td>3.334549</td>
</tr>
<tr>
<td>H</td>
<td>-5.827586</td>
<td>-0.621894</td>
<td>2.185362</td>
</tr>
<tr>
<td>C</td>
<td>-4.944119</td>
<td>2.445305</td>
<td>3.386621</td>
</tr>
<tr>
<td>H</td>
<td>-3.741934</td>
<td>3.898018</td>
<td>2.332069</td>
</tr>
<tr>
<td>H</td>
<td>-6.133829</td>
<td>0.819340</td>
<td>4.174218</td>
</tr>
<tr>
<td>H</td>
<td>-5.078200</td>
<td>3.076741</td>
<td>4.267149</td>
</tr>
</tbody>
</table>

H₃NThThNH₃ (E= -1.69539852 Hartree)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>0.308149</td>
<td>0.082608</td>
<td>1.201432</td>
</tr>
<tr>
<td>Th</td>
<td>0.245147</td>
<td>0.321222</td>
<td>-1.434558</td>
</tr>
<tr>
<td>N</td>
<td>0.166344</td>
<td>0.546222</td>
<td>-4.081569</td>
</tr>
<tr>
<td>N</td>
<td>0.370136</td>
<td>-0.156877</td>
<td>3.847799</td>
</tr>
<tr>
<td>H</td>
<td>1.015925</td>
<td>0.998326</td>
<td>-4.442422</td>
</tr>
<tr>
<td>H</td>
<td>-0.636599</td>
<td>1.108376</td>
<td>-4.389845</td>
</tr>
<tr>
<td>H</td>
<td>0.091466</td>
<td>-0.373564</td>
<td>-4.533619</td>
</tr>
<tr>
<td>H</td>
<td>0.321552</td>
<td>0.760801</td>
<td>4.307941</td>
</tr>
<tr>
<td>H</td>
<td>-0.422613</td>
<td>-0.714516</td>
<td>4.189622</td>
</tr>
<tr>
<td>H</td>
<td>1.231494</td>
<td>-0.617226</td>
<td>4.166752</td>
</tr>
</tbody>
</table>

NHCThThNHC (E= -4.46492813 Hartree)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>-1.619608</td>
<td>0.978290</td>
<td>-0.093462</td>
</tr>
<tr>
<td>Th</td>
<td>0.955734</td>
<td>0.250374</td>
<td>-0.097769</td>
</tr>
<tr>
<td>C</td>
<td>-4.080184</td>
<td>1.757690</td>
<td>-0.027180</td>
</tr>
<tr>
<td>C</td>
<td>-6.329448</td>
<td>1.997169</td>
<td>-0.444444</td>
</tr>
<tr>
<td>C</td>
<td>-6.002034</td>
<td>2.892283</td>
<td>0.528356</td>
</tr>
<tr>
<td>H</td>
<td>-7.277958</td>
<td>1.788973</td>
<td>-0.923666</td>
</tr>
<tr>
<td>H</td>
<td>-6.610468</td>
<td>3.614519</td>
<td>1.058457</td>
</tr>
<tr>
<td>C</td>
<td>3.457327</td>
<td>-0.385722</td>
<td>-0.045454</td>
</tr>
<tr>
<td>C</td>
<td>5.716608</td>
<td>-0.438424</td>
<td>-0.472444</td>
</tr>
<tr>
<td>C</td>
<td>5.473532</td>
<td>-1.335100</td>
<td>0.523157</td>
</tr>
<tr>
<td>H</td>
<td>6.641131</td>
<td>-0.159592</td>
<td>-0.962619</td>
</tr>
<tr>
<td>H</td>
<td>6.145661</td>
<td>-1.987340</td>
<td>1.066790</td>
</tr>
<tr>
<td>N</td>
<td>-5.158898</td>
<td>1.329213</td>
<td>-0.759684</td>
</tr>
<tr>
<td>H</td>
<td>-5.071521</td>
<td>0.593725</td>
<td>-1.455364</td>
</tr>
<tr>
<td>N</td>
<td>-4.648188</td>
<td>2.727935</td>
<td>0.760483</td>
</tr>
<tr>
<td>H</td>
<td>-4.098902</td>
<td>3.254376</td>
<td>1.434526</td>
</tr>
<tr>
<td>N</td>
<td>4.491145</td>
<td>0.116714</td>
<td>-0.795561</td>
</tr>
<tr>
<td>H</td>
<td>4.336395</td>
<td>0.826266</td>
<td>-1.506579</td>
</tr>
<tr>
<td>N</td>
<td>4.111080</td>
<td>-1.284853</td>
<td>0.759672</td>
</tr>
<tr>
<td>H</td>
<td>3.614374</td>
<td>-1.837721</td>
<td>1.452770</td>
</tr>
</tbody>
</table>

ONThThNO (E= -1.32849595 Hartree)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>4.748362</td>
</tr>
<tr>
<td>N</td>
<td>0.000000</td>
<td>0.000000</td>
<td>3.519295</td>
</tr>
<tr>
<td>Th</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.444051</td>
</tr>
</tbody>
</table>
4. Th 0.000000 0.000000 -1.444051
5. N 0.000000 0.000000 -3.519295
6. O 0.000000 0.000000 -4.748362

OCThThCO (E= -1.39592341 Hartree)

1. O 0.000000 0.000000 4.912205
2. C 0.000000 0.000000 3.730288
3. Th 0.000000 0.000000 1.382857
4. Th 0.000000 0.000000 -1.382857
5. C 0.000000 0.000000 -3.730288
6. O 0.000000 0.000000 -4.912205