Supporting information for:
Sizable Dynamics in Small Pores: CO₂ Location and Motion in the α-Mg Formate Metal-Organic Framework

[a] Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada, N6A 5B7
[b] State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
[c] National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, P.R. China
[d] State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, P.R. China

Table of Contents

Table S1. The extracted wobbling and hopping angles of CO₂ in α-Mg formate 2
Figure S1. Experimental and simulated powder X-ray diffraction patterns 3
Figure S2. The distribution of carbon atoms of CO₂ in α-Mg formate at various temperatures, as calculated by MD simulations 4
Figure S3. The calculated mean squared displacement of CO₂ in α-Mg formate 5
Figure S4. Crystal lattice of α-Mg formate, crystallographically unique hydrogen positions, and CO₂ adsorption sites 6
Figure S5. Experimental and motionally-simulated ¹³C SSNMR spectra 7
Figure S6. The dynamic motions of CO₂ molecules in α-Mg formate 8
Figure S7. CO₂ location, position, and motion in α-Mg formate 9
Table S1. The extracted wobblinga and hoppingb angles of CO$_2$ in α-Mg formate, as derived from 13C SSNMR spectra using EXPRESS. Both motional rates are in the fast motion regime (i.e., $\geq 10^7$ Hz) throughout the experimental temperature range.

<table>
<thead>
<tr>
<th>Temperature (° K)</th>
<th>Wobbling (°)</th>
<th>Hopping (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>393</td>
<td>47.5</td>
<td>41</td>
</tr>
<tr>
<td>373</td>
<td>47.5</td>
<td>42</td>
</tr>
<tr>
<td>353</td>
<td>47.5</td>
<td>44</td>
</tr>
<tr>
<td>333</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>313</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>293</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>273</td>
<td>49</td>
<td>39</td>
</tr>
<tr>
<td>253</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>233</td>
<td>48.5</td>
<td>32</td>
</tr>
<tr>
<td>213</td>
<td>48</td>
<td>27</td>
</tr>
<tr>
<td>193</td>
<td>47</td>
<td>23</td>
</tr>
<tr>
<td>173</td>
<td>45</td>
<td>23</td>
</tr>
</tbody>
</table>

a The uncertainty of each wobbling angle is ± 0.1 °. b The uncertainty of each hopping angle is 0.2 °.

Figure S1. Powder XRD (pXRD) results of the activated and as-made α-Mg formate MOF, along with the calculated pXRD patterns.
Figure S2. The xy plane projection of the distribution of carbon atoms of CO$_2$ in α-Mg formate at various temperatures, as calculated by MD simulations. The decrease in localized intensity at higher temperatures, and increase in intensity between the maxima, is due to increased CO$_2$ mobility within the channels of α-Mg formate.
Figure S3. The calculated mean squared displacement (MSD) of the center of mass (COM) of CO$_2$ in α-Mg formate at a temperature of 253 K.
Figure S4. The extended crystal lattice of α-Mg formate, as viewed down the crystallographic b axis, is shown. There are six crystallographically unique hydrogen positions in this MOF, but only the three hydrogen atoms which protrude into the pore interior are shown here, highlighted by purple, yellow, and green circles. For clarity, the three types of hydrogen atoms are labeled within separate adjacent channels, although they all exist within the same channel. The red circles denote the CO₂ adsorption sites, and are only shown in three channels, but are present in all channels.
Figure S5. The experimental 13C VT SSNMR spectra of CO$_2$-loaded α-Mg formate are shown in (a), along with simulations in (b), (c), and (d). In (b), motional simulations incorporating localized wobbling and non-localized twofold hopping are depicted; these match well with the experimental spectra in (a). In contrast, the simulated spectra shown in (c) that only consider localized wobbling of CO$_2$, as well as spectra in (d) that only incorporate the non-localized twofold hopping (d) of CO$_2$, are both poor matches to the experimental spectra. Note the difference in x-axis scale in (d).
Figure S6. The dynamic motions of CO$_2$ molecules in the α-Mg formate MOF are illustrated. CO$_2$ participates in a localized wobbling through an angle of α, modeled by a C_6 sixfold rotation, along with a non-localized twofold (C_2) hopping through an equivalent angle β.
Figure S7. In (a), the localized C_6 wobbling of CO$_2$ through an angle of α about an individual hydrogen-based adsorption site within the pores of α-Mg formate is shown. The H(formate)...O-C(O$_2$) angle is 120° and H(formate)...O(CO$_2$) distance is ca. 3.2 Angstroms, according to MD simulations (see main text). The illustration in (b) is a depiction of the non-localized C_2 hopping of CO$_2$ through an angle of β between hydrogen-based adsorption sites along the b axis of α-Mg formate.