Effect of microsolvation on a $S_N2$ reaction. Indirect atomistic dynamics and weakened suppression of reactivity

Li Yang,$^a$§ Xu Liu,$^a$§ Jiaxu Zhang,*$^a$ and Jing Xie$^b$

$^a$MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
School of Chemistry and Chemical Engineering
Harbin Institute of Technology
Harbin 150001, P. R. China

$^b$Department of Chemistry
University of Minnesota
Minneapolis, Minnesota 55455, USA

Author E-mail Address: zhjx@hit.edu.cn

§ L. Y. and X. L. contributed equally to this work.
Table S1. Average fractions of product energy partitioned to internal excitation for F$^-$ (H$_2$O) + CH$_3$I → CH$_3$F + I$^-$ + H$_2$O scattering$^a$ and comparison with unsolvated reaction$^b$.

<table>
<thead>
<tr>
<th></th>
<th>DR</th>
<th>DS</th>
<th>Ind</th>
<th>Total</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$E_{coll} = 0.32$ eV</td>
<td></td>
</tr>
<tr>
<td>F$^-$ (H$_2$O)</td>
<td>0.62±0.02</td>
<td>0.46±0.04</td>
<td>0.75±0.01</td>
<td>0.69±0.01</td>
<td></td>
</tr>
<tr>
<td>F$^-$</td>
<td>0.54±0.03</td>
<td>0.55±0.04</td>
<td>0.79±0.02</td>
<td>0.69±0.02</td>
<td>0.70±0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$E_{coll} = 1.53$ eV</td>
<td></td>
</tr>
<tr>
<td>F$^-$ (H$_2$O)</td>
<td>0.64±0.03</td>
<td>0.56±0.06</td>
<td>0.82±0.02</td>
<td>0.73±0.02</td>
<td></td>
</tr>
<tr>
<td>F$^-$</td>
<td>0.63±0.02</td>
<td>0.66±0.02</td>
<td>0.85±0.07</td>
<td>0.66±0.01</td>
<td>0.59±0.08</td>
</tr>
</tbody>
</table>

$^a$Results are reported for the individual direct rebound (DR), direct stripping (DS), indirect (Ind) mechanisms, and for the total reaction.

$^b$refs 23 and 24.
Figure S1. H$_2$O-leaving time as a function of displacement occurrence time for the F$^-$ (H$_2$O) + CH$_3$I → CH$_3$F + I$^- +$ H$_2$O reaction at 0.32 eV collision energy, in comparison to 300 K data. Trajectories at these two energies show similar features for this information (see text). The results are illustrated for direct rebound (DR), direct stripping (DS), and indirect (Ind) scatterings.
Figure S2. Velocity scattering angle distributions at different collision energies for the \( F^-(H_2O)_n + CH_3I \rightarrow CH_3F + I^- + nH_2O \) (n = 0 and 1) reactions. The data for direct rebound (red), direct stripping (pink), and indirect (green) mechanisms and for the total scattering (blue) of solvated system are presented in left pannels. Each individual distribution is proportional to its contribution to the atomistic dynamics whose sum is normalized to unity. Right pannels denote the total distributions of unsolvated scattering from the simulation (blue) and experiment (black).\(^{23,24}\)