Electronic Supplementary Information

Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu$_{12}$Sb$_4$S$_{13}$ tetrahedrite

Yasufumi Kosaka,a Koichiro Suekuni,*b Katsuaki Hashikuni,a Yohan Bouyrie,c Michihiro Ohta,c and Toshiro Takabatake*a,d

a Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
b Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
* suekuni.koichiro.063@m.kyushu-u.ac.jp
c Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
d Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
Fig. S1 Schematic picture of the density of states near the valence band top for Cu$_{12-x}M_x$Sb$_4$S$_{13}$ ($M = $ Ge, Sn) and Cu$_{12-x}Zn_x$Sb$_4$S$_{13}$.

Fig. S2 Temperature dependence of charge carrier part of thermal conductivity κ_c for (a) $M = $ Ge and (b) $M = $ Sn of Cu$_{12-x}M_x$Sb$_4$S$_{13}$ ($x \leq 0.6$).