Electronic Supplementary Information

Hexacyanometallates for Sodium-Ion Batteries: Insights into Higher Redox Potentials Using d
Electronic Spin Configurations

Duho Kim,a Taesoon Hwang,a Jin-Myoung Lim,a Min-Sik Park,*,b Maenghyo Cho,*,a and Kyeongjae Cho*,c

a Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.

b Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.

c Department of Materials Science and Engineering and Department of Physics, the University of Texas at Dallas, Richardson, TX 75080, USA.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Lattice parameters</th>
<th></th>
<th></th>
<th>R_{exp}</th>
<th>R_{wp}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (Å)</td>
<td>c (Å)</td>
<td>Exp.</td>
<td>DFT</td>
<td>Exp.</td>
</tr>
<tr>
<td>NFMCN</td>
<td>6.5788</td>
<td>6.5803</td>
<td>18.9286</td>
<td>19.4447</td>
<td>5.77</td>
</tr>
</tbody>
</table>

Table S1 Comparison of lattice parameters of NFMCN obtained from Rietveld refinement results and First-principles calculation.
Fig. S1 Binding energy curves as a function of distance between Fe and (a) CN and (b) NC. r_0 refers to the distance at equilibrium state indicated as red circle.
Fig. S2 The projected partial density of states (PDOS) of $3d$ electrons based on a sampled intermediate phase between the lowest and highest mixing enthalpy in Na$_2$FeMn(CN)$_6$ from Fig. 2a.
Fig. S3 The projected partial density of states (PDOS) of 2p electrons based on the phase of lowest mixing enthalpy ((a) C and (b) N) and the phase of highest mixing enthalpy ((c) C and (d) N) from Fig. 2a in Na$_2$FeMn(CN)$_6$.
Fig. S4 (a) Initial charge (desodiation) and discharge (sodiation) curves between 2.0 V vs. 4.0 Na/Na$^+$ with a constant specific current of 0.1 C rate, and (b) corresponding dQ/dV profiles. (c) Charge and discharge curves from the first to fifth cycles under the same condition as (a). (d) The corresponding specific capacities as a function of cycle number.