Supplementary Information

A Novel Anion Doping Strategy to Enhance Upconversion Luminescence in NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$ Nanophosphors

Anming Li,1,2 Dekang Xu,1,* Hao Lin,1 Lu Yao,1 Shenghong Yang,1 Yuanzhi Shao,1 Yueli Zhang,1,* Zhenqiang Chen2

1State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering / School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

2Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Fig. S1 Dependence of red/green luminescence intensity ratios on F$^-$ doping contents in NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$/F$^-$ nanophosphors

Fig. S2 Semilogarithmic upconversion luminescence dynamic curves for NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$/F$^-$ nanophosphors with different F$^-$ contents monitored at 657 nm under 980 nm pulsed excitation.
Fig. S3 Absorption spectra of NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$ and NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$/F$^-$ with a 0.5 mmol F$^-$ content.

Fig. S4 Luminescence dynamic curves for 4I$_{13/2} \rightarrow ^4$I$_{15/2}$ transition in NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$ and NaGd(MoO$_4$)$_2$:Yb$^{3+}$/Er$^{3+}$/F$^-$ with a 0.5 mmol F$^-$ content under 980 nm pulsed excitation.