Supplement Materials

The role of group III, IV elements in Nb$_4$AC$_3$ MAX phases (A=Al, Si, Ga, Ge) and the unusual anisotropic behavior of electronic and optical properties

Fu Yu-donga, Baochang Wangb,c, Yue Tengd, Zhu Xiao-shuoa, Feng Xiao-xuea, Yan Mu-fuc, Pavel Korzhavyid,e, Weiwei Suna,*

aSchool of Material Science and Chemical Engineering & Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China

bDepartment of Physics and the Competence Centre for Catalysis, Chalmers University of Technology, 41296, Sweden

cSchool of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

dDepartment of Material Science and Engineering, KTH-Royal Institute Technology, Stockholm, SE-10044, Sweden

eInstitute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia

In Fig. S1, it can be seen that the band structure of Nb$_4$GaC$_3$ and Nb$_4$AlC$_3$ are quite similar as Al and Ga have the same number of valence electrons. Similarly, the band structure of Nb$_4$SiC$_3$ and Nb$_4$GeC$_3$ also show similar features. Compared with Nb$_4$GaC$_3$ and Nb$_4$AlC$_3$, Nb$_4$GeC$_3$ and Nb$_4$SiC$_3$ have more bands across the Fermi level, indicating more states available for intra-band absorption in these two systems, especially for Nb$_4$SiC$_3$, which can be further verified by the calculated real part of the dielectric function. The Nb$_4$GaC$_3$ has more bands around Fermi level than Nb$_4$AlC$_3$ as well.
Fig. S1. The band structure of Nb$_4$AlC$_3$ (a), Nb$_4$SiC$_3$ (b), Nb$_4$GaC$_3$ (c), and Nb$_4$GeC$_3$ (d). The Fermi level is set to be 0 eV.