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1.0 – Synthesis of DTSe

The Se-labelled compound DTSe was synthesised for resonant X-ray scattering (RXS) investigation using the four 
stage process shown diagrammatically in figure S1 below. The details of each step are also provided in the 
appropriate sub section.  Spectroscopic infomration is listed subsequently.  

Starting reagents and solvents were purchased from Fischer, Sigma Aldrich, Acros Organics and Fluorochem and 
used without further purification. Boronic acids were purchased from Kingston chemicals and were also used 
without further purification.

The structures after purification were confirmed by 1H and 13C nuclear magnetic resonance spectroscopy. The 
experiments were performed with a Joel JNM-ECP 400 MHz FT-NMR. The chemical shifts reported in this section 
are relative to tetramethylsilane used as an internal standard and coupling constants J are reported in Hertz 
(Hz). 1H experiments were performed at 400 MHz, 13C at 100 MHz and 19F 376 MHz. 

Low resolution electron ionisation (EI), electro-spray (ES), chemical ionisation (CI), matrix assisted laser 
deposition ionisation (MALDI) and high resolution mass spectrometry (HRMS) were obtained via the EPSRC 
National Mass Spectrometry Service Centre at Swansea University, Wales.

The purity of the final compounds was confirmed by high performance liquid chromatography. The HPLC setup 
consisted of Gilson 321 pump, Agilent/HP1100 detector with a Phenomex LUNA 18(2) reverse phase C18 column. 
The column dimensions are 250 mm x 4.6 mm, 5 µm particles and 100 Å pore size.
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Figure S1 – The Four step Synthesis of the Se-labelled compound DTSe (Compound 4).

Compound 1: 1,9-bis(2',3'-difluoro-[1,1'-biphenyl]-4-yl)nonane 

A stirred solution of 1,9-bis(4-bromophenyl)nonane (0.82g, 1.9mmol) and Pd(PPh3)4 (79mg, 0.07mmol, 4mol%) 
in benzene (15mL) were added to a solution of sodium carbonate (2M, 15mL) under 

 nitrogen atmosphere. Nitrogen gas was bubbled through the resulting two-phase mixture for 10 minutes and 
then a solution of (2,3-difluorophenyl) boronic acid (0.77g, 4.9mmol) in ethanol (15mL) was added. The 
reaction was heated under reflux conditions to 100°C for 15 hours. After cooling to ambient temperature, 
diethyl ether (150mL) and water (100mL) were added to the mixture. The separated organics were then 
washed with water (2x100mL) and dried over MgSO4(s). After removal of the dessicant by filtration, the 
solvent was concentrated in vacuo and the product isolated by column chromatography (Silica gel, eluent: 
hexane/CH2Cl2, 9:1). Yield 0.79g, 84%. 

δH(400MHz; CD2Cl2) δ 7.48-7.40 (m, 4H), 7.27 (d, 3J=8.4Hz, 4H), 7.23-7.06 (m, 6H), 2.64 (t, 3J=7.8Hz, 4H), 
1.63 (q, J = 7.4 Hz, 4H), 1.43-1.25 (m, 10H)

δC(100MHz; CD2Cl2) δ 151.58 (dd, 1J(C-F) = 247 Hz, 2J(C-F) = 13.8 Hz), 148.41 (dd, 1J(C-F) = 248 Hz, 2J(C-F) = 
13.1 Hz), 143.75 (s), 132.31 (d, J(C-F) = 2.3 Hz), 131.69 (d, J(C-F) = 10.0 Hz), 129.16 (d, J(C-F) = 3.1 Hz), 
129.06 (s), 125.78-125.72 (m), 124.54 (dd, J(C-F) = 7.7 Hz, 4.6 Hz), 116.07 (d, J(C-F) = 17.7 Hz), 36.05 (s), 
31.88 (s), 29.94 (s), 29.91 (s), 29.76 (s)

δF(376MHz; CD2Cl2) -139.09 (dt, 3J(F-F) = 20.8 Hz, 4J(F-H) = 6.9 Hz), -144.75 (dd, 3J(F-F) = 20.8 Hz, 4J(F-H) = 
4.6 Hz)

 Compound 2: 1,9-bis(2',3'-difluoro-4'-iodo-[1,1'-biphenyl]-4-yl)nonane.

Compound (1) (0.67g, 1.3 mmol) was dissolved in anhydrous THF (15 mL) under a dry N2 atmosphere and the 
solution was cooled to -78°C. nBuLi (1.6M, 1.83 mL, 2.9 mmol) was added dropwise and (after the addition) the 
reaction was left to stir for 1 hour at -78°C. A solution of iodine (0.74g, 2.9 mmol) in anhydrous THF (15mL) was 
then added. The reaction was stirred for 16hrs, slowly rising to ambient temperature. Water (100mL) and 
diethyl ether (100mL) were added to separate the organics, which were then washed successively with brine 
(50mL) and Na2S2O3(aq) (saturated solution, 100 mL).  The organic layer was separated and dried over 
MgSO4(s). After removal of the dessicant by filtration the solvents were concentrated to leave a yellow residue 
which quickly solidified. The pure product was obtained by recrystallization from ethanol.

δH(400MHz; CD2Cl2) 7.54 (ddd, 3J = 8.4 Hz, 4J(H-F) = 5.7 Hz, 5J(H-F) = 2.0 Hz, 2H), 7.42 (dd, 3J = 8.3 Hz, 4J =1.8 Hz, 
4H), 7.26 (d, 3J = 8.4 Hz, 4H), 7.03-6.96 (m, 2H), 2.63 (t, J = 7.8 Hz, 4H), 1.69-1.57 (m, 4H), 1.39-1.27 (m, 10H)

δC(100MHz; CD2Cl2) 151.47 (dd, 1J(C-F) = 244.5 Hz, 2J(C-F) = 14.6 Hz), 147.84 (dd, 1J(C-F) = 252.9 Hz, 2J(C-F) 
= 14.6 Hz), 144.12 (s), 133.72 (d, J(C-F) = 3.8 Hz), 131.97 (d, J(C-F) = 10.8 Hz), 131.53 (br s), 129.12 (s), 
128.96 (d, J(C-F) = 3.1 Hz), 126.89 (m), 80.23 (d, 2J(C-F) = 23.1 Hz), 35.69 (s), 31.77 (s), 29.83 (s), 29.80 (s), 
29.65 (s)

δF(376MHz; CD2Cl2) -117.92 (dd, 3J(F-F) = 20.8 Hz, 4J(F-H) = 4.6 Hz), -140.06 (dd, 3J(F-F) = 20.8 Hz, 4J(F-H) = 
6.9 Hz)

MS (EI) m/z 756.0 (M)+

HRMS : calculated for C33H30F4I2 : 756.0373, found 756.0373

Compound 3: Potassium 4-(Butylselanyl)phenyltrifluoroborate.

A solution of 1,4-dibromobenzene (2.36g, 10 mmol) and selenium powder (0.79 g, 10 mmol) in anhydrous THF 
(60 mL) was cooled to -78°C in a nitrogen atmosphere. nBuLi (2.2 M in cyclohexane, 4.5 mL, 10 mmol) was 



added dropwise and the reaction was warmed to 0°C over a period of 30 minutes. After the reaction mixture 
was clear, triisopropyl borate (1.88 g, 2.31 mL, 10 mmol) was added (at 0°C) and the reaction mixture was re-
cooled to -78°C. nBuLi (2.2 M in cyclohexane, 4.5 mL, 10 mmol) was then slowly added. After 10 minutes at -
78°C the temperature was raised to -10°C and the reaction was stirred at this temperature for 40 minutes. The 
reaction mixture was quenched with KHF2(aq) (1N, 25 mL, 25 mmol) and then warmed to room temperature. 
After stirring for 15 minutes, the suspension was concentrated and the residual solid was dissolved in dry 
acetone (80 mL). The insoluble salts were filtered off and the resulting organic solution was concentrated to 
leave a solid. This was dissolved in acetone (70 mL) and diethyl ether (70 mL) and precipitated to produce an 
off-white solid, 1.64g, 51%

δH(400MHz; (CD3)2CO)  7.41 (d, 3J = 7.7 Hz, 2H), 7.26 (d, 3J = 7.6 Hz, 2H), 2.82 (t, 3J = 7.3 Hz, 2H), 1.62 (m, 
2H), 1.40 (m, 2H), 0.87 (t, 3J = 7.3 Hz, 3H)

δC(100MHz; (CD3)2CO) 133.42, 132.07, 126.78, 33.17, 27.88, 23.46, 13.82
 
δF(376MHz; (CD3)2CO) -142.54 

δB(128 MHz; (CD3)2CO) 2.69

MS (NSI) m/z 274.03 (M-K)-

HRMS : calculated for C10H13
10BF3

74Se : 274.0329, found 274.0335

Compound 4: 1,9-bis(4''-(butylselanyl)-2',3'-difluoro-[1,1':4',1''-terphenyl]-4-yl)nonane.

Pd(PPh3)4 (28 mg, 0.02mmol, 6mol%) and K2CO3 (0.33 g, 2.4 mmol) were added to a mixture of (2) (0.3g, 0.4 
mmol) and (3) (0.25g, 0.8 mmol) dissolved in 1,4-dioxane (32 mL) and water (8 mL). Nitrogen gas was bubbled 
through the mixture for 10 minutes and the reaction was subsequently heated to 110°C for 15 hours under an 
N2 atmosphere. After cooling to ambient temperature, the organics were separated by adding diethyl ether 
(150mL) and water (100mL). The organics were washed with water (2x100mL) and dried over MgSO4(s). After 
removal of the dessicant by filtration, the solvent was concentrated in vacuo and the product isolated by 
column chromatography (Silica gel, eluent: hexane/CH2Cl2, 8:2). Yield 0.25 g, 68%. 

δH(400MHz; CD2Cl2)  7.58-7.54 (m, 4H), 7.52-7.46 (m, 8H), 7.30 (d, 3J = 8.2 Hz, 4H), 7.28-7.26 (m, 4H), 2.99 (t, 3J 
= 7.3 Hz, 4H), 2.67 (t, 3J = 7.6 Hz, 4H), 1.77-1.61 (m, 8H), 1.51-1.29 (m, 14H), 0.93 (t, 3J = 7.3 Hz, 6H)  

δC(100MHz; CD2Cl2) 148.93 (dd, 1J = 249.8Hz, 2J = 15.4Hz), 148.75 (dd, 1J = 249.8 Hz, 2J = 15.4 Hz), 143.85 (s), 
133.04 (s), 132.20 (s), 132.00 (s), 130.22 (dd, J(C-F) = 8.5 Hz, 2.3 Hz), 129.68 (s), 129.30-129.19 (m), 129.12 (s), 
129.04 (br s), 125.24-125.17 (m), 124.97-124.90 (m), 36.03 (s), 32.64 (s), 31.85 (s), 29.86 (s), 29.83 (s), 29.69 
(s), 27.67 (s), 23.39 (s), 13.73 (s) 

δF(376MHz; CD2Cl2) -143.92 (s)  

MS (EI) m/z 928.1 (M)+



1.1. – Chemical Analysis  -Spectroscopic data for compounds 1-4

Compound 1

1H-NMR data for compound 1 

13C- NMR data for compound 1



Compound 2 

1H-NMR data for compound 2

13C- NMR data for compound 2 



19F –NMR data for compound 2

High Resolution Mass spectroscopy data for compound 2





Comparison of theoretical and experimental isotope profile for compound 2 



 Compound 3 

1H-NMR data for compound 3



13C- NMR data for compound 3

11B- NMR data for compound 3

19F –NMR data for compound 3



High Resolution Mass spectroscopy data for compound 3



Comparison of theoretical and experimental isotope profile for compound 3 



Compound 4

1H-NMR data for compound 4



13C- NMR data for compound 4

19F –NMR data for compound 4



High Resolution Mass spectroscopy data for compound 4







Comparison of theoretical and experimental isotope profile for compound 4 

Note:

 Accurate mass measurement is not possible, as the monoisotopic ions of the multiple Se 
multiisotopic envelope are too weak to measure accurately with current technology.  Instead the 
isotope profile is used instead, see above. This is an issue for compounds which contain more than 
one Se-atom.



2.0 – Miscibility of DTC5C7 and DTSe
The miscibility of DTC5C7 and DTSe was examined under crossed polarisers using an Olympus BX50 
Microscope fitted with a Mettler FP82 HT hotstage. A small amount of both samples was sandwiched between 
two glass plates, each 1mm in thickness.The glass cell (~1cm  1.5cm) was heated to 160°C and compressed ×
slightly in order to create a region of contact between the two compunds. The cell was then cooled at 
10°C/min to 60°C. The key transition points (not shown in the main text) are displayed below in Figure S2.  

(e)100𝜇

N Iso(a)

100𝜇m

NNtb
(b)

100𝜇m

NNtb SmC(c)

100𝜇m

Ntb SmC(d)

100𝜇m

SmCSmX SmX + SmCm

Figure S2 – The optical textures observed between crossed polarisers in a sandwich cell containing both 
DTC5C7 and DTSe. In all four images DTSe is on the right and DTC5C7 is on the left. The central region is a 
mixture of the two. Solid lines indicate phase boundaries and dashed lines indicate the approximate edge of 
the mixed region when it is in the same phase as one (or more) of the pure compounds. The images were 
taken at (a) 130°C, (b) 120°C, (c) 114°C, (d) 110°C and (e) 90°C.  Iso = Isotropic, N = nematic, Ntb = twist bend 
nematic, SmC = smectic C, SmX = modulated smectic. SmX is meta-stable and only observed on cooling. 



3.0 – DSC Analysis of DTC5C7, DTSe and Mixtures
The phase behaviour of all compounds and mixtures was investigated by differential scanning calorimetry 
(DSC) using a Perkin Elmer Diamond DSC, fitted with a ULSP liquid nitrogen cooling unit. The binary mixtures 
are prepared by dissolving the weighed amount of DTC5C7 and DTSe in Dichloromethane (DCM), and freeze 
drying after mixing in solution. The scanning rate was 10°C/min in all instances. The samples were investigated 
on both heating and cooling. The first heating curves are displayed below in Figure (S1) and were used to 
construct the phase diagram displayed in Figure 1(c) of the main text. The transition temperatures are 
tabulated in Table S1. The mixtures are named using the notation ‘Se00’, where the last two digits correspond 
to the molar percent of DTSe.

Figure S3 – First heating DSC curves of DTC5C7, DTSe and mixtures of the two compounds. The scanning rate 
was 10°C/min in all cases.

Table S1 – Position of temperature maxima 

Sample C → SmC 
(°C)

C → Ntb 

(°C)
SmC → Ntb 

(°C)
SmC → N 

(°C)
Ntb → N 

(°C)
N → Iso 

(°C)

DTC5C7 --- 99.5 --- --- 127.8 156.8

Se25 80 --- 99.8 --- 122.3 148.5

Se45 79.5 --- 105.3 --- 115.8 140

Se60 79 --- 99.8 --- 112.8 131

Se80 102.1 --- --- 110.3 --- 125.3

DTSe 111.2 --- --- 114.8 --- 123.1

The temperatures corresponding to the DSC peak positions of DTC5C7, DTSe and mixtures of both compounds. 
C = Crystal, SmC = Smectic C, Ntb = twist bend nematic, N = Nematic, Iso = Isotropic.



4.0 – X-ray Scattering of Se45

4.1 – X-ray Fluorescence of Se45
At photon energies close to the absorption (K) edge of the atom, electrons in the inner-most shells may be 
excited, which upon relaxation, may re-emit the absorbed photons with reduced energy. This is known as 
inelastic scattering or fluorescence.  The fluorescence of Se45 was investigated on station I22 of the diamond 
light source in the energy range 12.608 – 12.708KeV, i.e. above and below the Se K-edge of 12.658KeV.  
Throughout the experiment the sample was held in a 1mm glass capillary. A 2D diffraction pattern was 
recorded in each 10eV increment of the energy range and converted to 1D by azimuthal integration. The 
change in background scattering, attributed to fluorescence, was determined from the baseline of the 1D 
diffraction patterns. These results are plotted in Figure S4 below for three different temperatures. At energies 
above and equal to the resonant energy, background scattering increases by a factor of ~2.    
 

Figure S4 – The energy dependent background intensity created by fluorescent (inelastically scattered) 
photons in the range of q = 0.3 – 3.7nm-1. The quantity  represents the scaling factor between the initial 𝐼/𝐼0

background intensity ( ), measured at 12.608KeV, and the background intensity measured in at each 0.01KeV 𝐼0

increment up to 12.708KeV.

4.2 – Resonant Scattering Features of Se45

The resonant X-ray scattering (RXS) investigation of Se45 was performed on beam-line I22 of the Diamond Light 
Source. The sample was held in a 1 mm glass capillary. The capillary was placed in a permanently magnetised 
cell such that the 1T magnetic field ran perpendicular to its length. The sample was heated and cooled using 
nitrogen gas (Cryojet HT by Oxford Instruments). Resonance of Se45 was firstly investigated at 105°C (Ntb phase) 
in the energy range 12.608 – 12.708 keV, i.e. above and below the Se K-edge (12.658KeV). The sample to 
detector distance was 2.11m and the beam path was held under vacuum. Figure S5 shows 1D diffractograms 
recorded in each 10eV increment of the energy range. At the Se K-edge (12.658 keV) a resonant diffraction peak 
was observed at q ~ 0.62 nm-1, corresponding to a d-spacing ~10 nm.

The resonance effect was further investigated with temperature. The sample was heated and cooled using 
nitrogen gas (Cryojet HT by Oxford Instruments). A maximum temperature difference of 5°C was observed 
between nominal temperature and DSC peak position. As mentioned in the main text the resonance effect was 
observed only in the Ntb phase and at the biphasic boundaries with the neighbouring N and SmC phases. Table 
S2 below summarises the key observations of temperature variation on the scattering maxima observed in 
Se45.

𝐼
𝐼0



Figure S5 – The 1D  diffractograms of Se45 recorded at 105°C, with incident beam energy changing from 
12.608 – 12.708 keV. The resonant diffraction peak is observed at the Selenium absorption edge 12.658keV. 
The curves have been corrected for background scattering.

Table S2 – Summary of RXS data of Se45 during temperature scan.

T
(°C)

p
(nm)

d1
(nm)

d2
(nm)

q//p

(nm-1)
q//d2

(nm-1)
d3

(nm)
120 - 4.46 2.03 - 1.28 0.46
115 12.2 4.46 2.03 0.050 1.10 0.46
112 12.1 4.41 2.03 0.060 1.18 0.46
110 10.8 4.38 2.01 0.090 1.22 0.46
107 10.4 4.36 1.99 0.075 1.18 0.46
105 10.1 4.36 1.99 0.055 1.08 0.46
102 9.8 4.35 1.98/2.07* 0.050 0.015 0.45
100 9.3 4.14 2.06 0.050 0.015 0.45
95 - 4.12 2.06 - 0.015 0.45
90 - 4.12 2.06 - 0.015 0.45

p = helical pitch length, d1 and d2 respectively correspond to the average inter- and intra- molecular spacings 
determined from the non-resonant SAXS peaks. d3 is the d-spacing of the WAXS peak maximum, this is related 
to the lateral distance between molecules, which equals to 1.117 d3 (A. de Vries. Mol. Cryst. Liq. Cryst. 10. 219 
(1970).). The FWHM along the helical axis (∆q||) of the peaks associated with p and d2 are also provided. *Here 
the scattering maximum of the Ntb phase, and the Bragg reflection of the SmC phase, are simultaneously 
observed. The larger of the two spacings corresponds to the SmC Bragg reflection. 

4.3 – Non-resonant Scattering Features of Se45
The non-resonant small and wide angle scattering (SAXS and WAXS) features of Se45 were additionally 
investigated on station BM28 of the European Synchrotron Radiation Facility (ESRF). The sample was 
investigated in both transmission and grazing incidence setups. In the transmission setup the sample was 
sealed in a 1.0mm diameter glass capillary and placed in a custom built heating cell. The cell was in turn placed 
between the poles of a superconducting solenoid, which produced a magnetic field of 3T. The magnetically 
aligned WAXS and SAXS diffraction patterns were collected separately using a Mar165 CCD detector. The 
sample to detector distance was ~30cm for the WAXS patterns and ~1m for the SAXS patterns. In both 
instances a helium flushed flight tube was used to reduce air scattering. The WAXS patterns are shown in 

Development of 
SmC phase



Figure 3(e-g) of the main text, while the SAXS patterns are provided below in Figure S6. Similar to the evidence 
provided in the main text, alignment with the field worsens with temperature, until orientation is lost entirely 
in the SmC phase. The SAXS peaks can also be seen to shift away from the meridian (vertical axis in S6) in the 
Ntb phase. 

In the grazing incidence setup Se45 was melted onto a silicon substrate and cooled into the Ntb phase (110°C).  
The resulting thin film was then sheared to produce homeotropic alignment of the helical axis. Homeotropic 
alignment persisted into SmC phase, with the layer normal perpendicular to the substrate surface. This can be 
seen in the grazing incidence x-ray diffraction (GIXRD) patterns of the Ntb and SmC phases (S6). Homeotropic 
alignment is confirmed by the centring of the small angle peak(s) along the substrate surface normal 
(meridian).

Figure S6 – Diffractograms of Se45, recorded far below the resonant energy. N: Nematic 140-116°C, Ntb: Twist 
Bend Nematic 115-106°C and SmC: Smectic-C 105-76°C.In the WAXS and SAXS patterns, the direction of the 
magnetic field is vertical. The GIXRD patterns show that better orientational order can be achieved in the Ntb 
and SmC phases by shearing sample. 



5.0 – Geometric Calculations of the Helical Structure
Here we derive the geometric equations describing the behaviour of the molecules (assuming the ideal 
conformation) in the Ntb phase. From these equations one may estimate the average tilt angle of the 
mesogens and the average bend angle of the dimers, using the experimentally determined values of the pitch 
length (p) and average inter-mesogen height difference (h). As mentioned in the main text, p is determined 
from the spacing of the resonant peak (p, Table S2), while h is determined from the spacing of the outer-most 
non-resonant SAXS peak (d2, Table S2). A diagram of the molecular structure is provided below in Figure S7 to 
facilitate definition of the various angles and dimer components.

Figure S7 – Details of molecular geometry of DTSe and DTC5C7 and definition of angles and vectors. The 
lengths of the rigid mesogens and spacers were determined via molecular modelling using Materials Studio. 
The exterior bend angle ϕ and the unit vectors n1 and n2, defined here, will be referred to further below. 

5.1 – Tilt Angle of the Mesogens
Firstly the value of h is linked to the helical contour length (l) between the centres of two mesogens by h = 
lcos(θ). Here θ is the tilt angle between the mesogens and the helical axis n0. This relationship is shown 
diagrammatically in Figure S8 below. The average value of l in Se45 may be calculated by averaging the 
molecular structures of DTC5C7 and DTSe. While the lengths of different segments are shown in Figure S7, the 
molar average spacer length is calculated to be 0.87 nm. The average terminal chain length is 0.52 nm. The 
average length of the mesogen is 1.46 nm. The average contour length of the molecule is therefore calculated 
to be 4.75 nm. As the terminal chains tend to be conformationally more disordered, as well as partially 
interdigitated, the effective contour length of the molecule is expected to be shorter than that. The contour 
length between the two mesogens in the dimer, l, is 1.46 + 0.87 = 2.33 nm.  As the value of l is assumed 
constant and the measured value of h is almost invariant with temperature ≃ 2nm (Table S2), θ is calculated as 
~29° throughout the temperature range of the Ntb phase. 



Figure S8 – Diagrammatic representation of the relationship between l, h, θ and the helical axis n0. On the left 
the molecule is wrapped around a cylinder and the distance between the two mesogens follows a helical 
contour. An unwrapped version of the cylinder is shown on the right. Here the molecule is straight (mesogens 
parallel with ϕ = 0). 

5.2 - BendAngle of the Dimers
As mentioned in the main text, on progression along n0 each mesogen is rotated about the helical axis by an 
angle of 2πh/p in respect to the previous one. Here this rotation angle will be denoted by α. If each of the two 
rod-like mesogens of a dimer are respectively assigned unit vectors n1 and n2, the exterior angle between them 
( ) can be written: 𝜙

sin
𝜙
2

= sin 𝜃sin
𝛼
2

= sin 𝜃sin (
𝜋ℎ
𝑝

)        (𝐸𝑞𝑛. 𝑆1)

Here,  is the bend angle of the dimers as defined in Figure S7. As sin(θ) is approximately constant in the Ntb 𝜙
phase, the bend angle is dependent only on the rotation angle α (Figure S9), which in turn is dependent on the 
pitch length p. As shown in Table S2, p ranges between 9 and 12nm. Using equation S1 we calculate that  the 
value of  increases on cooling, from 28° (115°C) to 35° (105°C).  𝜙

5.3 – Twist Angle of the Dimers 
For the dimer molecules another important parameter to describe its shape is its twisting angle, i.e. the angle 
between the two mesogens when projected along the spacer axis (for an all-trans spacer the twisting angle is 
0, Figure 4a main text). The twisting angle can be calculated using the directors of the two mesogens, and that 
of the spacer in the middle. Taking the vertical position of the spacer as reference (z=0), the heights of the two 
mesogens are ±h/2 respectively. Therefore the director of the spacer 

ns = sin i + cos k (𝐸𝑞𝑛. 𝑆2𝑎)

and the directors of the two mesogens

n1 = sin cos(-h/p)i + sin sin(-h/p) j + cos k (𝐸𝑞𝑛. 𝑆2𝑏)

n2 = sin cos(h/p)i + sin sin(h/p) j + cos k (𝐸𝑞𝑛. 𝑆2𝑐)

Therefore we have (𝐸𝑞𝑛. 𝑆3)

n1 = (sin2 cos(h/p) + cos2)ns - 2sin cos2 sin2(h/2p) i - sin sin(h/p) j + 2sin2 sin2(h/2p)cos k

n2 = (sin2 cos(h/p) + cos2)ns - 2sin cos2 sin2(h/2p) i + sin sin(h/p) j + 2sin2 sin2(h/2p)cos k



The twist angle 

cos 𝛿 =
cos2 𝜃sin2 (𝜋ℎ

2𝑝) ‒ sin2 𝜃cos2 (𝜋ℎ
2𝑝)

cos2 𝜃sin2 (𝜋ℎ
2𝑝) + sin2 𝜃cos2 (𝜋ℎ

2𝑝)
                (𝐸𝑞𝑛. 𝑆4)

According to equation S4 the twisting angle can be calculated to be 129° at 115°C, and 125° at 105°C.

5.4 – Tilt Angle of the Dimers 
An additional quantity, not discussed in the main text, is the effective tilt angle of the dimers in respect to the 
helical axis. The direction of a dimer is defined as the vector connecting the centres of the two mesogens of 
the dimer, and the dimer tilt angle  is the angle of this vector towards the helical axis. Where the symbols 
have their previously defined meanings, the radius r of the cylinder (hence the helix) can be defined from 
simple helical geometry as (Figure S9):

𝑟 =
𝑝tan 𝜃

2𝜋
               (𝐸𝑞𝑛. 𝑆5)

We may also define a chord length w (Figure S9), which represents the projected distance between two 
mesogens in the plane perpendicular to n0. 

𝑤 = 2𝑟sin (𝛼
2) =

𝑝tan 𝜃
𝜋

sin (𝛼
2)                 (𝐸𝑞𝑛. 𝑆6)

Figure S9 – Diagrammatic representation of the rotation angle between successive mesogens (α), the unit 
vectors n1 and n2, the radius of the helix (r) and the projected chord length w. 

The tilt angle of the dimers β, in respect to the helical axis can then be defined from simple geometry as:

tan 𝛽 =
𝑤

h
= tan 𝜃

sin (
𝛼
2

)

𝛼/2
                    (𝐸𝑞𝑛. 𝑆7)

The tilt angle β as a function of the mesogen tilt angle and pitch is listed in Table S3.

Table S3 – The dimer tilt angle β as a function of the mesogen tilt angle θ and helical pitch p.

θ \p 9 nm 10 nm 11 nm 12 nm
20° 18.00° 18.37° 18.65° 18.86°



25° 22.60° 23.05° 23.38° 23.64°
30° 27.26° 27.78° 28.16° 28.45°
35° 32.00° 32.57° 32.99° 33.31°
40° 36.83° 37.44° 37.88° 38.22°
45° 41.75° 42.38° 42.84° 43.19°

6.0 – Molecular Modelling

Molecular modelling was carried out in order to show how a smaller bend angle (), between the two 
mesogenic arms of a dimer molecule, can be achieved by changing of the C-C torsion angles in the spacer. We 
have also estimated the energy cost associated with such changes of torsion angles in the spacer.

The modelling of the molecules was carried out using Materials Studio (BIOVIA). In the modelling, the 
conformations of the (-C7H14-) spacer are studied, starting from the all-trans conformation where all six torsion 
angles in the spacer are  180°. Assuming that the spacer is always helical, the six torsion angles are kept to 
the same value , changing from 180° to 150° with 5° steps. The bend angle  is measured for each torsion  
(Figure S10) and listed in Table S4. The energies of the spacer in different conformations are calculated, using 
Universal Forcefield, and compared in Table S5. According to Table S5, the ideal torsion angle  should be 
around 160° as the experimentally measured bend angle  from X-ray studies is around 29°. For the same 
molecular conformation, the twist angle  of the dimer is measured to be 128° (Figure S10c), which 
corresponds remarkably well with the experimentally determined values of between 129° and 125° as shown 
in section 5.3. Even though the energy involved in such a conformational change from the all-trans state seems 
to be high, ~5.8 kcal/mol, it is an over-estimation as the many other spacer conformations that achieve the 
same bend angle were not explored. A high energy conformational state can in fact be stabilized by the high 
entropy of the spacer, i.e. the various different conformations the spacer can take. 

Figure S10. The molecular model of DTC7 with torsion angles in the spacer  = 160°. For simplicity only the 
spacer and the two phenyl rings directly connected to the spacer are shown. To show the molecular geometry 
more clearly a rod model of the molecule is shown on the right hand side, where the C-C bond represents the 
spacer, and C-H bonds the mesogens. (a-c) The twist angle  of the two mesogens around the spacer is 
measured to be 128°: (a) view when the spacer is parallel to the paper; (b) tilted view, (c) view along the 
spacer. (d) The bend angle  of the dimer, i.e. the angle between the two mesogens, is measured to be 30°.

Table S4. The bend angle  of a dimer as a function of torsion angles  adopted by the spacer.

° °
180 56.1
175 54.0



170 48.4
165 39.3
160 29.6
155 14.9
150 1.4

Table S5. Energy estimation of spacer (-C7H14-) with different torsion angles .

° Total 
(kcal/mol)

Valence 
(kcal/mol)

Non-Bond 
(kcal/mol)

180 3.997 1.248 2.750
175 4.359 1.463 2.896
170 5.444 2.096 3.348
165 7.250 3.106 4.144
160 9.755 4.423 5.332
155 12.941 5.952 6.989
150 16.880 7.604 9.276


