Supporting Information: On the structure of prilocaine in aqueous and amphiphilic solutions

Alvaro Silva-Santisteban, Nicola Steinke, Andrew J. Johnston, Guadalupe N. Ruiz, Luis Carlos Pardo and Sylvia E. McLain

NMR

The 1H NMR spectra for prilocaine·HCl (HPLC) and prilocaine freebase (PLC) in CDCl$_3$ are shown in Fig. 1. The successful conversion of HPLC to PLC is clear from the significant upfield shift of H_N2 from ~ 10.5 ppm for HPLC to ~ 2.6 in PLC. The 1H spectra for HPLC in D$_2$O is also shown.

Seed potentials

Tables 1 & 2 show the seed potentials used for the EPSR simulation for HPLC in water and PLC in water/methanol solutions as described in the main text.

Methyl-N1 interactions

Figure 2 shows the $\text{-CH}_3\text{-N1}$ interactions between PLC and methanol in the methanol/water solutions as mentioned in the main text.

Methyl orientation below the methylphenyl ring

Figure 4 shows the Euler angle probability density maps used to generate the most likely orientation of methanol below the methylphenyl ring as depicted in Fig. 11 of the main text and Figure 3 shows the definitions for the angles used in the analysis.

Orientation of bridging water around N2

Figure 5 shows the Euler angle orientational probability maps for water around N2 on PLC used to generate Figure 13 in the main text. There is an expected symmetry in shifting ψ by 180° given that the axes on water have this symmetry. The distribution of orientations indicate that although the preferential orientation is somewhat broad, it is highly likely that a single water molecule will form two hydrogen bonds on prilocaine. The distances used were the maxima for $g_{\text{OH}_w}(r)$ and $g_{\text{N2H}_w}(r)$.

*Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
b Departament de Física i Enginyeria Nuclear & Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Catalonia (Spain)
*Email:sylvia.mclain@bioch.ox.ac.uk
Fig. 1 (top) PLC in d-CHCl₃, (middle) HPLC in D₂O (the H₉ₓ peaks are suppressed from the rapid exchange with water) and (bottom) HPLC in d-CHCl₃.

Table 1 The prilocaine parameters used in the EPSR simulations of the samples.
<table>
<thead>
<tr>
<th>Atom Label</th>
<th>ε (kJ mol$^{-1}$)</th>
<th>σ (Å)</th>
<th>q (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm</td>
<td>0.2761</td>
<td>3.500</td>
<td>0.1450</td>
</tr>
<tr>
<td>Om</td>
<td>0.7113</td>
<td>3.120</td>
<td>-0.6830</td>
</tr>
<tr>
<td>Hm</td>
<td>0.1255</td>
<td>2.500</td>
<td>0.0400</td>
</tr>
<tr>
<td>Hmo</td>
<td>0.0000</td>
<td>0.000</td>
<td>0.4180</td>
</tr>
<tr>
<td>Ow</td>
<td>0.6500</td>
<td>3.166</td>
<td>-0.8476</td>
</tr>
<tr>
<td>Hw</td>
<td>0.0000</td>
<td>0.000</td>
<td>0.4238</td>
</tr>
</tbody>
</table>

Table 2 The parameters used in the EPSR simulations for the solvents. The first 4 atom types on methanol, Ow and Hw on water.

Fig. 2 $g(r)$s and SDMs for methanol OH interactions around N1 in the prilocaine methanol/water system.

Fig. 3 Euler angle definitions used for ANGULA analysis in main text.

Fig. 4 Euler angle probability density maps for nearest neighbour methanol molecules underneath the methylphenyl ring. Left: ($\cos\theta_{or}$, ϕ_{or}), right: ($\cos\theta_{or}$, ψ_{or}).
Fig. 5 Euler angle probability density maps for water around N2, plotted using the reference system from the amine nitrogen (N2) for PLC in methanol/water solution. Left: \((\cos \theta, \phi)\), right: \((\cos \theta, \psi)\).