
Vrashali S. Kalyani, a Dipalee D. Malkhede a,* and Jyotirmayee Mohanty b,c,*

aDepartment of Chemistry, Savitribai Phule Pune University, Pune 411 007, India
bRadiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
cHomi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India

OH

OH

O

OH

O

OH

O

Calix[4]arene

Pyrene butyric acid

EDC / HOBr

PCX4

Scheme S1: Synthetic route for the synthesis of PCX4.

Experimental methods

Absorption spectra were recorded with a Jasco V-650 UV-vis spectrophotometer (Tokyo, Japan). Steady-state fluorescence spectra were recorded using a Hitachi F-4500 spectrofluorometer (Tokyo, Japan). The samples were excited at 345 nm, where the changes in the optical density were nominal in the absorption spectra. The time-resolved fluorescence measurements were carried out using a time-correlated single photon counting (TCSPC) set-up from Horiba Scientific (UK). In the present work, a 339 nm LED (<1ns, 1 MHz repetition rate) was used for excitation. A reconvolution procedure was used to analyze the observed decays, which could be satisfactorily fitted by mono- or biexponential decay functions. The fluorescence decays \(I(t) \) were analyzed in general as a sum of exponentials:

\[
I(t) = \sum B_i \exp(-t/\tau_i) \tag{S1}
\]

where, \(B_i \) and \(\tau_i \) are the pre-exponential factor and fluorescence lifetime for the \(i^{th} \) component, respectively. Reduced chi-square \((\chi^2) \) values (within 1.00-1.20) and random distribution of the weighted residuals among data channels were used to judge the acceptance of the fits.

For anisotropy measurements, samples were excited with a vertically polarized excitation beam and the vertically and horizontally polarized fluorescence decays were collected with a large spectral bandwidth of ~32 nm. Using these polarized fluorescence decays, the anisotropy decay function, \(r(t) \), was constructed as follows:

\[
r(t) = \frac{I_v(t) - G I_h(t)}{I_v(t) + 2G I_h(t)} \tag{S2}
\]

\(I_v(t) \) and \(I_h(t) \) are the vertically and horizontally polarized decays, respectively, and \(G \) is the correction factor for the polarization bias of the detection setup. The \(G \) factor was determined independently by using a horizontally polarized excitation beam and measuring the two perpendicularly polarized fluorescence decays.

Method M1:

In the present study, the binding constants \((K_{eq}) \) for the \(\beta\)-CD:PCX4 complex was determined by using the fluorescence titration method, according to a 1:1 binding model (eq. S3).

\[
\beta\text{-CD} + \text{PCX4} \rightarrow \text{PCX4}\beta\text{-CD} \tag{S3}
\]

Taking \([\text{PCX4}]_0 \) and \([\beta\text{-CD}]_0 \) as the total concentrations of PCX4 and \(\beta\text{-CD} \), respectively, eq. S4 applies for the concentration of free (uncomplexed) PCX4 in equilibrium:

\[
[\text{PCX4}]_{\text{eq}} = (K_{eq}[\text{PCX4}]_0 - K_{eq}[\beta\text{-CD}]_0 - 1 + \sqrt{(K_{eq}[\text{PCX4}]_0 + K_{eq}[\beta\text{-CD}]_0 + 1)^2 - 4K_{eq}[\text{PCX4}]_0[\beta\text{-CD}]_0})/2K_{eq} \tag{S4}
\]

where \(K_{eq} \) represents the binding constant for the PCX4 with the host. Since the interconversion of the free and complexed dye in solution (cf. equilibrium 1) occurs at a much slower rate (in microseconds) than the excited-state lifetimes of the dyes (sub-nanosecond to nanoseconds), it can be safely assumed that during the fluorescence measurements there is effectively no ex-
change between the free and complexed dyes. Thus, the observed results in the fluorescence measurements can be attributed simply to the excited-state processes, assuming that the initial populations of the excited free and complexed dyes are determined by the binding constant of the dye as given by equilibrium 1 and the absorption coefficients of the two species at the excitation wavelength. The total fluorescence intensity can be expressed as

\[
I_{\text{total}} = I_{\text{PCX4}} \left[\frac{[\text{PCX4}]_0}{[\text{PCX4}]} \right] + I_{\beta-\text{CD}: \text{PCX4}} \left[\frac{[\beta-\text{CD}: \text{PCX4}]_0}{[\text{PCX4}]} \right] \quad (S5)
\]

where, \(I_{\text{PCX4}} \) is the fluorescence intensity in the absence of \(\beta-\text{CD} \) and \(I_{\beta-\text{CD}: \text{PCX4}} \) is the fluorescence intensity of the complex when all the PCX4 molecules in the solution are complexed.

Rearranging eq. S5, the changes in fluorescence intensity can be written as,

\[
\Delta I = \left(1 - \frac{[\text{PCX4}]}{[\text{PCX4}]_0} \right) \left(I_{\beta-\text{CD}: \text{PCX4}} - I_{\text{PCX4}} \right) \quad (S6a)
\]

In the absorption titrations, we have employed the changes in the optical density of PCX4 with the \(\beta-\text{CD} \) host which can be written as

\[
\Delta OD = \left(1 - \frac{[\text{PCX4}]}{[\text{PCX4}]_0} \right) \left(OD_{\beta-\text{CD}: \text{PCX4}} - OD_{\text{PCX4}} \right) \quad (S6b)
\]

The \(K_{\text{eq}} \) values were obtained by non-linear curve fittings according to eq. S6(a&b).

Figure S1: \(^1\text{H-NMR of PCX4 in CDCl}_3 \).
Figure S2. 1H NMR titrations of PCX4 at different concentrations of γ-CD (A) and β-CD (B) in DMSO-d6.
Figure S3. Absorption spectra of PCX4 in water containing 1.5 mM β-CD (A) and 18 mM γ-CD at different pHs.

Figure S4. AFM images of PCX4 in the presence of 3.0 mM γ-CD (A), 1.5 mM of γ-CD (B) and 1.5 mM β-CD (C).
Figure S5: 13C-NMR Spectra of PCX4.

Figure S6: HR-MS spectra of PCX4.
Figure S7: FT-IR spectra of PCX4.

References