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Scheme S1: Synthetic route for the synthesis of PCX4. 

Experimental methods 
Absorption spectra were recorded with a Jasco V-650 UV-vis 
spectrophotometer (Tokyo, Japan). Steady-state fluorescence 
spectra were recorded using a Hitachi F-4500 spectrofluorometer 
(Tokyo, Japan). The samples were excited at 345 nm, where the 
changes in the optical density were nominal in the absorption 
spectra. The time-resolved fluorescence measurements were 
carried out using a time-correlated single photon counting 
(TCSPC) set-up from Horiba Scientific (UK). In the present work, a 
339 nm LED (<1ns, 1 MHz repetition rate) was used for excita-
tion. A reconvolution procedure was used to analyze the ob-
served decays,1 which could be satisfactorily fitted by mono- or 
biexponential decay functions. The fluorescence decays [I(t)] 
were analyzed in general as a sum of exponentials,1 
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where, Bi and i are the pre-exponential factor and fluorescence 
lifetime for the ith component, respectively. Reduced chi-square 

(2) values (within 1.00-1.20) and random distribution of the 
weighted residuals among data channels were used to judge the 
acceptance of the fits. 

For anisotropy measurements, samples were excited with a 
vertically polarized   excitation beam and the vertically and hori-
zontally polarized fluorescence decays were collected with a 
large spectral bandwidth of ~32 nm. Using these polarized fluo-
rescence decays, the anisotropy decay function, r(t), was con-
structed as follows:1 
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IV(t) and IH(t) are the vertically and horizontally polarized decays, 
respectively, and G is the correction factor for the polarization 
bias of the detection setup. The G factor was determined inde-
pendently by using a horizontally polarized excitation beam and 
measuring the two perpendicularly polarized fluorescence de-
cays. 
 
Method M1:  

 
In the present study, the binding constants (Keq) for the -
CD:PCX4 complex was determined by using the fluorescence 
titration method, according to a 1:1 binding model (eq. S3).2, 3  
 

-CD + PCX4 -CD:PCX4
Keq

 (S3)
     

Taking PCX40 and -CD0 as the total concentrations of PCX4 
and -CD, respectively, eq. S4 applies for the concentration of 
free (uncomplexed) PCX4 in equilibrium: 
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where Keq represents the binding constant for the PCX4 with the 
host. Since the interconversion of the free and complexed dye in 
solution (cf. equilibrium 1) occurs at a much slower rate (in mi-
croseconds)2, 3 than the excited-state lifetimes of the dyes (sub-
nanosecond to nanoseconds), it can be safely assumed that dur-
ing the fluorescence measurements there is effectively no ex-
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change between the free and complexed dyes. Thus, the ob-
served results in the fluorescence measurements can be at-
tributed simply to the excited-state processes, assuming that the 
initial populations of the excited free and complexed dyes are 
determined by the binding constant of the dye as given by equi-
librium 1 and the absorption coefficients of the two species at 
the excitation wavelength. The total fluorescence intensity can 
be expressed as 
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where, IPCX4

 
is the fluorescence intensity in the absence of -CD 

and I-CD:PCX4
 
is the fluorescence intensity of the complex when all 

the PCX4 molecules in the solution are complexed. 
 
Rearranging eq. S5, the changes in fluorescence intensity can be 
written as,  
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In the absorption titrations, we have employed the changes in 
the optical density of PCX4 with the -CD host which can be writ-
ten as3 
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The Keq values were obtained by non-linear curve fittings accord-
ing to eq. S6(a&b). 
 

 

 

Figure S1: 1H-NMR of PCX4 in CDCl3. 
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Figure S2. 1H NMR titrations of PCX4 at different concentrations of -CD (A) and -CD (B) in DMSO-d6. 
 

 

 



 

 

4

325 350 375 400

0.00

0.05

0.10 13

1

 

O
D

 / nm

pH
1) 2.2
2) 2.6
3) 3.22
4) 3.83
5) 4.4
6) 5.12
7) 5.73
8) 6.3
9) 7.05
10) 7.73
11) 8.3
12) 9.03
13) 9.89

(A)

 

325 350 375 400
0.0

0.1

0.2

0.3

 

14

O
D

 / nm

1

(B) pH
1) 3.0
2) 3.7
3) 4.0
4) 4.2
5) 4.4
6) 4.6
7) 5.0
8) 5.6
9) 6.0
10) 6.6
11) 7.1
12) 7.5
13) 8.7
14) 9.6

 

Figure S3. Absorption spectra of PCX4 in water containing 1.5 mM -CD (A) and 18 mM-CD at different pHs. 

 

    

Figure S4. AFM images of PCX4 in the presence of 3.0 mM -CD (A), 1.5 mM of -CD (B) and 1.5 mM-CD (C). 
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Figure S5: 13C-NMR Spectra of PCX4. 

 

 

Figure S6: HR-MS spectra of PCX4. 
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Figure S7: FT-IR spectra of PCX4.  
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