The Atmospheric Oxidation of CH$_3$OOH by OH radical.

The effect of water vapor

Josep M. Anglada1, Ramon Crehuet1, Marilia Martins-Costa2, Joseph S. Francisco3 and Manuel Ruiz-López2.

1) Departament de Química Biológica i Modelització Molecular (IQAC – CSIC), c/ Jordi Girona 18, E-08034 Barcelona, Spain
2) SRSMC, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
3) College of Arts and Sciences, University of Nebraska-Lincoln, 1223 Oldfather Hall Lincoln, NE 68588-0312, United States.

e-mail: anglada@iqac.csic.es

(Supplementary information)
Figure S1: Selected geometrical parameters (distances in Å, and angles in °) for the optimized structures of the reactants. Plain values obtained at BH&HLYP/6-311+G(2df,2p). Values in parenthesis optimized at QCISD/6-311+G(2df,2p).

Table S1: Calculated equilibrium constant (K_{eq} in cm3 molec$^{-1}$) computed at different Temperatures (T in Kelvin) for the formation of the CH$_3$OOH···H$_2$O, H$_2$O···OH (M1), and H$_2$O···OH (M2). The rate constants for the decomposition of the complexes into the reactants (in s$^{-1}$) are also given in each case.a

<table>
<thead>
<tr>
<th></th>
<th>CH$_3$OOH···H$_2$O</th>
<th>H$_2$O···OH (M1)</th>
<th>H$_2$O···OH (M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>K_{eqa}</td>
<td>k_a</td>
<td>K_{eqb}</td>
</tr>
</tbody>
</table>

a
Table S2: Calculated, at different temperatures (T, in Kelvin) of the equilibrium constant (K_{eq} in cm3 molec$^{-1}$) for the pre-reactive complexes, tunneling factor (Γ), rate constant (k_{uni} in s$^{-1}$) of the unimolecular decomposition of the reactive complexes into the products, and the bimolecular rate constant ($k_t=K_{eq} \cdot \Gamma \cdot k_{uni}$, in cm3 molec$^{-1}$·s$^{-1}$) for the four elementary reactions in the oxidation of CH$_3$OOH by OH.

<table>
<thead>
<tr>
<th>T</th>
<th>K_{eq}</th>
<th>Γ</th>
<th>k_{uni}</th>
<th>k_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>6.22e-22</td>
<td>2.81</td>
<td>2.23e+09</td>
<td>3.90e-12</td>
</tr>
<tr>
<td>280</td>
<td>5.35e-22</td>
<td>2.70</td>
<td>2.54e+09</td>
<td>3.67e-12</td>
</tr>
<tr>
<td>290</td>
<td>4.01e-22</td>
<td>2.50</td>
<td>3.27e+09</td>
<td>3.28e-12</td>
</tr>
<tr>
<td>298</td>
<td>3.23e-22</td>
<td>2.37</td>
<td>3.94e+09</td>
<td>3.02e-12</td>
</tr>
<tr>
<td>300</td>
<td>3.06e-22</td>
<td>2.34</td>
<td>4.12e+09</td>
<td>2.96e-12</td>
</tr>
<tr>
<td>310</td>
<td>2.38e-22</td>
<td>2.21</td>
<td>5.12e+09</td>
<td>2.69e-12</td>
</tr>
<tr>
<td>325</td>
<td>1.69e-22</td>
<td>2.02</td>
<td>6.92e+09</td>
<td>2.36e-12</td>
</tr>
<tr>
<td>275</td>
<td>8.51e-23</td>
<td>2.66</td>
<td>3.68e+09</td>
<td>8.33e-13</td>
</tr>
<tr>
<td>280</td>
<td>7.47e-23</td>
<td>2.55</td>
<td>4.00e+09</td>
<td>7.62e-13</td>
</tr>
<tr>
<td>290</td>
<td>5.84e-23</td>
<td>2.36</td>
<td>4.67e+09</td>
<td>6.43e-13</td>
</tr>
<tr>
<td>298</td>
<td>4.86e-23</td>
<td>2.23</td>
<td>5.25e+09</td>
<td>5.68e-13</td>
</tr>
<tr>
<td>300</td>
<td>4.64e-23</td>
<td>2.19</td>
<td>5.40e+09</td>
<td>5.48e-13</td>
</tr>
<tr>
<td>310</td>
<td>3.75e-23</td>
<td>2.05</td>
<td>6.19e+09</td>
<td>4.76e-13</td>
</tr>
<tr>
<td>325</td>
<td>2.79e-23</td>
<td>1.88</td>
<td>7.46e+09</td>
<td>3.91e-13</td>
</tr>
<tr>
<td>275</td>
<td>6.22e-22</td>
<td>2.39</td>
<td>1.37e+09</td>
<td>2.04e-12</td>
</tr>
<tr>
<td>280</td>
<td>5.35e-22</td>
<td>2.31</td>
<td>1.54e+09</td>
<td>1.90e-12</td>
</tr>
<tr>
<td>290</td>
<td>4.01e-22</td>
<td>2.15</td>
<td>1.92e+09</td>
<td>1.65e-12</td>
</tr>
<tr>
<td>298</td>
<td>3.23e-22</td>
<td>2.04</td>
<td>2.27e+09</td>
<td>1.50e-12</td>
</tr>
<tr>
<td>300</td>
<td>3.06e-22</td>
<td>2.02</td>
<td>2.36e+09</td>
<td>1.46e-12</td>
</tr>
<tr>
<td>310</td>
<td>2.38e-22</td>
<td>1.91</td>
<td>2.86e+09</td>
<td>1.30e-12</td>
</tr>
<tr>
<td>325</td>
<td>1.69e-22</td>
<td>1.78</td>
<td>3.73e+09</td>
<td>1.12e-12</td>
</tr>
</tbody>
</table>

a) Calculated according to the conventional transition state theory.
Table S3: Calculated and fitted overall rate constants ($k_{tot} = k_{5a} + k_{5b}$, in cm3 molec$^{-1}$·s$^{-1}$) and branching ratios, at different temperatures (T in K) for reactions 5a and 5b (Γ_{5a} and Γ_{5b}, in %) obtained from the calculated and fitted rate constants.

<table>
<thead>
<tr>
<th>T</th>
<th>calc k_{tot}</th>
<th>fitted k_{tot}</th>
<th>Calc. Γ_{5a}</th>
<th>Calc Γ_{5b}</th>
<th>Fitted Γ_{5a}</th>
<th>Fitted Γ_{5b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.00</td>
<td>7.03e-12</td>
<td>7.00e-12</td>
<td>67.43</td>
<td>32.57</td>
<td>67.43</td>
<td>32.57</td>
</tr>
<tr>
<td>280.00</td>
<td>6.56e-12</td>
<td>6.56e-12</td>
<td>67.53</td>
<td>32.47</td>
<td>67.63</td>
<td>32.37</td>
</tr>
<tr>
<td>290.00</td>
<td>5.77e-12</td>
<td>5.79e-12</td>
<td>67.94</td>
<td>32.06</td>
<td>67.88</td>
<td>31.88</td>
</tr>
<tr>
<td>298.00</td>
<td>5.27e-12</td>
<td>5.28e-12</td>
<td>68.12</td>
<td>31.88</td>
<td>68.12</td>
<td>31.88</td>
</tr>
<tr>
<td>300.00</td>
<td>5.14e-12</td>
<td>5.16e-12</td>
<td>68.09</td>
<td>31.91</td>
<td>68.22</td>
<td>31.78</td>
</tr>
<tr>
<td>310.00</td>
<td>4.63e-12</td>
<td>4.63e-12</td>
<td>68.47</td>
<td>31.53</td>
<td>68.47</td>
<td>31.53</td>
</tr>
<tr>
<td>325.00</td>
<td>4.00e-12</td>
<td>3.99e-12</td>
<td>68.75</td>
<td>31.25</td>
<td>68.67</td>
<td>31.33</td>
</tr>
</tbody>
</table>

Table S4: Kinetic equations S1 – S11 according to Scheme 2 of the main text. [M1] stands for the concentration of the M1 complex of the H$_2$O···OH

\[
d[\text{CH}_3\text{OOH}] / dt = - k_a[\text{CH}_3\text{OOH}][\text{H}_2\text{O}] + k_a[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}] \quad \text{(S1)}
\]

\[
d[\text{H}_2\text{O}] / dt = - k_a[\text{CH}_3\text{OOH}][\text{H}_2\text{O}] + k_a[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}] - k_b[\text{OH}][\text{H}_2\text{O}] + k_b[\text{M1}] \quad \text{(S2)}
\]

\[
d[\text{OH}] / dt = - k[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}][\text{OH}] + k_1[\text{BCR1}] - k_b[\text{OH}][\text{H}_2\text{O}] + k_b[\text{M1}] \quad \text{(S3)}
\]

\[
d[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}] / dt = - k[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}][\text{OH}] + k_1[\text{BCR1}] + k_a[\text{CH}_3\text{OOH}][\text{H}_2\text{O}] - k_a[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}] \quad \text{(S4)}
\]

\[
d[\text{H}_2\text{O} \cdot \cdot \cdot \text{OH} (\text{M1})] / dt = - k_b[\text{M1}] + k_b[\text{OH}][\text{H}_2\text{O}] + k_4[\text{BCR1}] - k_4[\text{CH}_3\text{OOH}] [\text{M1}] + k_5[\text{BCR2}] - k_5[\text{CH}_3\text{OOH}] [\text{M1}] + k_6[\text{BCR3}] - k_6[\text{CH}_3\text{OOH}] [\text{M1}] \quad \text{(S5)}
\]

\[
d[\text{BCR1}] / dt = k[\text{CH}_3\text{OOH} \cdot \text{H}_2\text{O}][\text{OH}] - k_1[\text{BCR1}] - k_2[\text{BCR2}] - k_4[\text{BCR1}] + k_4[\text{CH}_3\text{OOH}] [\text{M1}] \quad \text{(S6)}
\]

\[
d[\text{BCR2}] / dt = k_4[\text{BCR1}] - k_2[\text{BCR2}] - k_3[\text{BCR2}] + k_3[\text{BCR3}] - k_5[\text{BCR2}] + k_5*[\text{CH}_3\text{OOH}] [\text{M1}] - k_7[\text{BCR2}] - k_8*[\text{BCR2}] \quad \text{(S7)}
\]
\[\frac{d[BCR3]}{dt} = k_3[BCR2] - k_3[BCR3] - k_6[BCR3] + k_6[CH_3OOH][M1] - k_9[BCR3] \] (S8)

\[\frac{d[P1]}{dt} = + k_7[BCR2] \] (S9)
\[\frac{d[P2]}{dt} = + k_8[BCR2] \] (S10)
\[\frac{d[P3]}{dt} = + k_9[BCR3] \] (S11)

Table S5: Kinetic equations S12 – S25 according to Scheme 3 of the main text. [M2] stands for the concentration of the M2 complex of the H_2O···OH

\[\frac{d[CH_3OOH]}{dt} = -ka[CH_3OOH][H_2O] + k_a[CH_3OOH··H_2O] \] (S12)
\[\frac{d[H_2O]}{dt} = -ka[CH_3OOH][H_2O] + k_a[CH_3OOH··H_2O] - kc[H_2O][OH] + k_c[M2] \] (S13)
\[\frac{d[OH]}{dt} = -k_1[CH_3OOH··H_2O][OH] + k_1*[BCR4] - kc[H_2O][OH] + k_c[M2] \] (S14)
\[\frac{d[CH_3OOH··H_2O]}{dt} = -k_1[CH_3OOH··H_2O][OH] + k_1*[BCR4] + ka[CH_3OOH][H_2O] - k_a[CH_3OOH··H_2O] \] (S15)
\[\frac{d[BCR4]}{dt} = k_1[CH_3OOH··H_2O][OH] - k_1*[BCR4] - k_2[BCR4] + k_2[BCR5] \] (S17)
\[\frac{d[BCR7]}{dt} = k_4[BCR5] - k_4[BCR7] - k_5[BCR7] + k_5[BCR8] - k_7[BCR7] + k_7[CH_3OOH][M2] - k_12[BCR7] \] (S20)
\[\frac{d[BCR8]}{dt} = k_5[BCR7] - k_5[BCR8] - k_8[BCR8] + k_8[CH_3OOH][M2] - k_13[BCR7] \] (S21)
\[\frac{d[P1]}{dt} = k_10[BCR6] \] (S22)
\[\frac{d[P2]}{dt} = k_11[BCR6] \] (S23)
\[\frac{d[P3]}{dt} = k_12[BCR7] \] (S24)
Figure S2: Concentration of the BCR4 – BCR8 pre-reactive complexes as a function of time in the steady state regime. For the numerical integration we have used [OH]=2 x 10^6 molecule·cm⁻³, [CH₃OOH] = 6.45 x 10^10 molecule·cm⁻³, Temperatures ranging from 275 to 325 K and the water concentrations corresponding to RH of 20%, 40%, 60%, 80%, and 100% for each temperature.
Table S6: Calculated equilibrium constant (K_{eq} in cm3 molec$^{-1}$) computed at different Temperatures (T in Kelvin) for the formation of the complexes from scheme 2 of the main text. The rate constants for the decomposition of the complexes into the reactants (in s$^{-1}$) are also given in each case.a,b

<table>
<thead>
<tr>
<th>T</th>
<th>K_{eq1}</th>
<th>K_{-1}</th>
<th>k_{eq4}</th>
<th>k_{4}</th>
<th>k_{eq5}</th>
<th>k_{5}</th>
<th>k_{eq6}</th>
<th>k_{6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>3.45e-21</td>
<td>3.77e+14</td>
<td>7.13e-22</td>
<td>1.83e+15</td>
<td>3.89e-20</td>
<td>3.35e+13</td>
<td>1.24e-20</td>
<td>1.05e+14</td>
</tr>
<tr>
<td>280</td>
<td>2.99e-21</td>
<td>4.50e+14</td>
<td>5.95e-22</td>
<td>2.27e+15</td>
<td>2.94e-20</td>
<td>4.60e+13</td>
<td>9.81e-21</td>
<td>1.38e+14</td>
</tr>
<tr>
<td>290</td>
<td>2.29e-21</td>
<td>6.32e+14</td>
<td>4.22e-22</td>
<td>3.43e+15</td>
<td>1.72e-20</td>
<td>8.41e+13</td>
<td>6.33e-21</td>
<td>2.29e+14</td>
</tr>
<tr>
<td>298</td>
<td>1.87e-21</td>
<td>8.15e+14</td>
<td>3.27e-22</td>
<td>4.68e+15</td>
<td>1.15e-20</td>
<td>1.33e+14</td>
<td>4.56e-21</td>
<td>3.36e+14</td>
</tr>
<tr>
<td>300</td>
<td>1.78e-21</td>
<td>8.67e+14</td>
<td>3.07e-22</td>
<td>5.05e+15</td>
<td>1.05e-20</td>
<td>1.48e+14</td>
<td>4.21e-21</td>
<td>3.68e+14</td>
</tr>
<tr>
<td>310</td>
<td>1.42e-21</td>
<td>1.17e+15</td>
<td>2.29e-22</td>
<td>7.23e+15</td>
<td>6.58e-21</td>
<td>2.51e+14</td>
<td>2.88e-21</td>
<td>5.74e+14</td>
</tr>
<tr>
<td>325</td>
<td>1.03e-21</td>
<td>1.76e+15</td>
<td>1.53e-22</td>
<td>1.19e+16</td>
<td>3.47e-21</td>
<td>5.24e+14</td>
<td>1.71e-21</td>
<td>1.06e+15</td>
</tr>
</tbody>
</table>

a) Calculated according to the conventional transition state theory.
b) The corresponding values for the CH$_3$OOH + H$_2$O \leftrightarrow CH$_3$OOH···H$_2$O and H$_2$O···OH \leftrightarrow H$_2$O···OH (M1) are listed in Table S1.

Table S7: Calculated rate constants (in s$^{-1}$) computed at different Temperatures (T in Kelvin) for the unimolecular reactions described in Scheme 2.

<table>
<thead>
<tr>
<th>T</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>k_7</th>
<th>k_8</th>
<th>k_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>1.85e+12</td>
<td>3.35e+10</td>
<td>5.92e+11</td>
<td>1.72e+11</td>
<td>7.71e+08</td>
<td>7.39e+09</td>
<td>3.61e+09</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>1.87e+12</td>
<td>3.74e+10</td>
<td>6.21e+11</td>
<td>1.79e+11</td>
<td>8.32e+08</td>
<td>7.82e+09</td>
<td>3.83e+09</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>1.90e+12</td>
<td>4.61e+10</td>
<td>6.79e+11</td>
<td>1.93e+11</td>
<td>9.63e+08</td>
<td>8.75e+09</td>
<td>4.30e+09</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>1.93e+12</td>
<td>5.40e+10</td>
<td>7.28e+11</td>
<td>2.05e+11</td>
<td>1.08e+09</td>
<td>9.54e+09</td>
<td>4.71e+09</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.93e+12</td>
<td>5.61e+10</td>
<td>7.40e+11</td>
<td>2.08e+11</td>
<td>1.11e+09</td>
<td>9.75e+09</td>
<td>4.82e+09</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1.97e+12</td>
<td>6.75e+10</td>
<td>8.02e+11</td>
<td>2.22e+11</td>
<td>1.28e+09</td>
<td>1.08e+10</td>
<td>5.37e+09</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>2.01e+12</td>
<td>8.73e+10</td>
<td>8.98e+11</td>
<td>2.43e+11</td>
<td>1.56e+09</td>
<td>1.26e+10</td>
<td>6.29e+09</td>
<td></td>
</tr>
</tbody>
</table>
Table S8: Calculated equilibrium constant (K_{eq} in cm3 molec$^{-1}$) computed at different Temperatures (T in Kelvin) for the formation of the complexes from scheme 3 of the main text. The rate constants for the decomposition of the complexes into the reactants (in s$^{-1}$) are also given in each case.$^{\text{a,b}}$

<table>
<thead>
<tr>
<th>T</th>
<th>K_{eq1}</th>
<th>k_{-1}</th>
<th>K_{eq6}</th>
<th>k_{-6}</th>
<th>K_{eq7}</th>
<th>k_{-7}</th>
<th>K_{eq8}</th>
<th>k_{-8}</th>
<th>K_{eq9}</th>
<th>k_{-9}</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>1.03e-19</td>
<td>1.26e+13</td>
<td>6.38e-20</td>
<td>2.04e+13</td>
<td>2.94e-19</td>
<td>4.43e+12</td>
<td>2.69e-19</td>
<td>4.85e+12</td>
<td>1.72e-20</td>
<td>7.59e+13</td>
</tr>
<tr>
<td>280</td>
<td>9.00e-20</td>
<td>1.49e+13</td>
<td>4.76e-20</td>
<td>2.84e+13</td>
<td>2.11e-19</td>
<td>6.40e+12</td>
<td>1.90e-19</td>
<td>7.10e+12</td>
<td>1.33e-20</td>
<td>1.02e+14</td>
</tr>
<tr>
<td>290</td>
<td>7.01e-20</td>
<td>2.06e+13</td>
<td>2.73e-20</td>
<td>5.30e+13</td>
<td>1.13e-19</td>
<td>1.29e+13</td>
<td>9.93e-20</td>
<td>1.46e+13</td>
<td>8.22e-21</td>
<td>1.76e+14</td>
</tr>
<tr>
<td>298</td>
<td>5.82e-20</td>
<td>2.61e+13</td>
<td>1.80e-20</td>
<td>8.50e+13</td>
<td>7.03e-20</td>
<td>2.18e+13</td>
<td>6.09e-20</td>
<td>2.51e+13</td>
<td>5.73e-21</td>
<td>2.67e+14</td>
</tr>
<tr>
<td>300</td>
<td>5.57e-20</td>
<td>2.77e+13</td>
<td>1.63e-20</td>
<td>9.54e+13</td>
<td>6.27e-20</td>
<td>2.48e+13</td>
<td>5.41e-20</td>
<td>2.87e+13</td>
<td>5.25e-21</td>
<td>2.95e+14</td>
</tr>
<tr>
<td>310</td>
<td>4.49e-20</td>
<td>3.67e+13</td>
<td>1.01e-20</td>
<td>1.65e+14</td>
<td>3.63e-20</td>
<td>4.57e+13</td>
<td>3.07e-20</td>
<td>5.39e+13</td>
<td>3.46e-21</td>
<td>4.78e+14</td>
</tr>
<tr>
<td>325</td>
<td>3.35e-20</td>
<td>5.41e+13</td>
<td>5.17e-21</td>
<td>3.52e+14</td>
<td>1.71e-20</td>
<td>1.07e+14</td>
<td>1.40e-20</td>
<td>1.30e+14</td>
<td>1.95e-21</td>
<td>9.35e+14</td>
</tr>
</tbody>
</table>

Table S9: Calculated rate constants (in s$^{-1}$) computed at different Temperatures (T in Kelvin) for the unimolecular reactions described in Scheme 3.

<table>
<thead>
<tr>
<th>#</th>
<th>T</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
<th>k_6</th>
<th>k_7</th>
<th>k_8</th>
<th>k_9</th>
<th>k_{10}</th>
<th>k_{11}</th>
<th>k_{12}</th>
<th>k_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>4.50e+11</td>
<td>1.00e+12</td>
<td>1.19e+11</td>
<td>4.61e+11</td>
<td>3.46e+12</td>
<td>7.83e+11</td>
<td>3.09e+12</td>
<td>3.23e+12</td>
<td>2.72e+09</td>
<td>4.12e+09</td>
<td>9.42e+07</td>
<td>8.34e+07</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>4.51e+11</td>
<td>1.06e+12</td>
<td>1.24e+11</td>
<td>4.62e+11</td>
<td>3.43e+12</td>
<td>8.06e+11</td>
<td>3.08e+12</td>
<td>3.27e+12</td>
<td>2.94e+09</td>
<td>4.33e+09</td>
<td>1.09e+08</td>
<td>9.80e+07</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>4.53e+11</td>
<td>1.19e+12</td>
<td>1.34e+11</td>
<td>4.63e+11</td>
<td>3.38e+12</td>
<td>8.54e+11</td>
<td>3.08e+12</td>
<td>3.34e+12</td>
<td>3.39e+09</td>
<td>4.78e+09</td>
<td>1.21e+08</td>
<td>1.33e+08</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>4.55e+11</td>
<td>1.30e+12</td>
<td>1.42e+11</td>
<td>4.65e+11</td>
<td>3.34e+12</td>
<td>8.91e+11</td>
<td>3.07e+12</td>
<td>3.39e+12</td>
<td>3.78e+09</td>
<td>4.25e+09</td>
<td>1.49e+08</td>
<td>1.67e+08</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>4.56e+11</td>
<td>1.33e+12</td>
<td>1.44e+11</td>
<td>4.65e+11</td>
<td>3.34e+12</td>
<td>9.01e+11</td>
<td>3.07e+12</td>
<td>3.41e+12</td>
<td>3.88e+09</td>
<td>4.33e+09</td>
<td>1.57e+08</td>
<td>1.77e+08</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>4.59e+11</td>
<td>1.47e+12</td>
<td>1.54e+11</td>
<td>4.66e+11</td>
<td>3.29e+12</td>
<td>9.47e+11</td>
<td>3.06e+12</td>
<td>3.48e+12</td>
<td>4.40e+09</td>
<td>4.70e+09</td>
<td>2.01e+08</td>
<td>2.31e+08</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>4.61e+11</td>
<td>1.69e+12</td>
<td>1.70e+11</td>
<td>4.68e+11</td>
<td>3.24e+12</td>
<td>1.02e+12</td>
<td>3.05e+12</td>
<td>3.57e+12</td>
<td>5.23e+09</td>
<td>5.27e+09</td>
<td>2.82e+08</td>
<td>3.35e+08</td>
<td></td>
</tr>
</tbody>
</table>
Table S10: Computed rate constants (in cm3·molecule$^{-1}$·s$^{-1}$) for the oxidation of CH$_3$OOH by OH without water vapor and including the effect of water vapor at different relative humidity (% RH), and different temperatures (T in Kelvin)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>No water</th>
<th>20%RH</th>
<th>40%RH</th>
<th>60%RH</th>
<th>80%RH</th>
<th>100%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>4.74 x 10^{-12}</td>
<td>4.85 x 10^{-12}</td>
<td>4.96 x 10^{-12}</td>
<td>5.07 x 10^{-12}</td>
<td>5.19 x 10^{-12}</td>
<td>5.30 x 10^{-12}</td>
</tr>
<tr>
<td>280</td>
<td>4.43 x 10^{-12}</td>
<td>4.55 x 10^{-12}</td>
<td>4.66 x 10^{-12}</td>
<td>4.77 x 10^{-12}</td>
<td>4.88 x 10^{-12}</td>
<td>5.00 x 10^{-12}</td>
</tr>
<tr>
<td>290</td>
<td>3.92 x 10^{-12}</td>
<td>4.03 x 10^{-12}</td>
<td>4.14 x 10^{-12}</td>
<td>4.25 x 10^{-12}</td>
<td>4.36 x 10^{-12}</td>
<td>4.47 x 10^{-12}</td>
</tr>
<tr>
<td>298</td>
<td>3.59 x 10^{-12}</td>
<td>3.70 x 10^{-12}</td>
<td>3.80 x 10^{-12}</td>
<td>3.91 x 10^{-12}</td>
<td>4.02 x 10^{-12}</td>
<td>4.13 x 10^{-12}</td>
</tr>
<tr>
<td>300</td>
<td>3.50 x 10^{-12}</td>
<td>3.61 x 10^{-12}</td>
<td>3.72 x 10^{-12}</td>
<td>3.83 x 10^{-12}</td>
<td>3.94 x 10^{-12}</td>
<td>4.05 x 10^{-12}</td>
</tr>
<tr>
<td>310</td>
<td>3.17 x 10^{-12}</td>
<td>3.28 x 10^{-12}</td>
<td>3.39 x 10^{-12}</td>
<td>3.49 x 10^{-12}</td>
<td>3.60 x 10^{-12}</td>
<td>3.71 x 10^{-12}</td>
</tr>
<tr>
<td>325</td>
<td>2.75 x 10^{-12}</td>
<td>2.86 x 10^{-12}</td>
<td>2.97 x 10^{-12}</td>
<td>3.07 x 10^{-12}</td>
<td>3.18 x 10^{-12}</td>
<td>3.28 x 10^{-12}</td>
</tr>
</tbody>
</table>

Reaction 5a+w: CH$_3$OOH + OH (+H$_2$O) \rightarrow CH$_3$O$_2$ + H$_2$O (+ H$_2$O)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>No water</th>
<th>20%RH</th>
<th>40%RH</th>
<th>60%RH</th>
<th>80%RH</th>
<th>100%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>2.29 x 10^{-12}</td>
<td>2.30 x 10^{-12}</td>
<td>2.30 x 10^{-12}</td>
<td>2.31 x 10^{-12}</td>
<td>2.32 x 10^{-12}</td>
<td>2.33 x 10^{-12}</td>
</tr>
<tr>
<td>280</td>
<td>2.13 x 10^{-12}</td>
<td>2.13 x 10^{-12}</td>
<td>2.14 x 10^{-12}</td>
<td>2.15 x 10^{-12}</td>
<td>2.16 x 10^{-12}</td>
<td>2.17 x 10^{-12}</td>
</tr>
<tr>
<td>290</td>
<td>1.85 x 10^{-12}</td>
<td>1.86 x 10^{-12}</td>
<td>1.87 x 10^{-12}</td>
<td>1.88 x 10^{-12}</td>
<td>1.89 x 10^{-12}</td>
<td>1.90 x 10^{-12}</td>
</tr>
<tr>
<td>298</td>
<td>1.68 x 10^{-12}</td>
<td>1.69 x 10^{-12}</td>
<td>1.70 x 10^{-12}</td>
<td>1.71 x 10^{-12}</td>
<td>1.72 x 10^{-12}</td>
<td>1.73 x 10^{-12}</td>
</tr>
<tr>
<td>300</td>
<td>1.64 x 10^{-12}</td>
<td>1.65 x 10^{-12}</td>
<td>1.66 x 10^{-12}</td>
<td>1.67 x 10^{-12}</td>
<td>1.68 x 10^{-12}</td>
<td>1.69 x 10^{-12}</td>
</tr>
<tr>
<td>310</td>
<td>1.46 x 10^{-12}</td>
<td>1.47 x 10^{-12}</td>
<td>1.49 x 10^{-12}</td>
<td>1.50 x 10^{-12}</td>
<td>1.51 x 10^{-12}</td>
<td>1.52 x 10^{-12}</td>
</tr>
<tr>
<td>325</td>
<td>1.25 x 10^{-12}</td>
<td>1.27 x 10^{-12}</td>
<td>1.28 x 10^{-12}</td>
<td>1.30 x 10^{-12}</td>
<td>1.31 x 10^{-12}</td>
<td>1.32 x 10^{-12}</td>
</tr>
</tbody>
</table>

Reaction 5b+w: CH$_3$OOH + OH (+H$_2$O) \rightarrow CH$_2$OOH + H$_2$O (+ H$_2$O)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>No water</th>
<th>20%RH</th>
<th>40%RH</th>
<th>60%RH</th>
<th>80%RH</th>
<th>100%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>7.02 x 10^{-12}</td>
<td>7.14 x 10^{-12}</td>
<td>7.26 x 10^{-12}</td>
<td>7.38 x 10^{-12}</td>
<td>7.51 x 10^{-12}</td>
<td>7.63 x 10^{-12}</td>
</tr>
<tr>
<td>280</td>
<td>6.56 x 10^{-12}</td>
<td>6.68 x 10^{-12}</td>
<td>6.80 x 10^{-12}</td>
<td>6.92 x 10^{-12}</td>
<td>7.04 x 10^{-12}</td>
<td>7.16 x 10^{-12}</td>
</tr>
<tr>
<td>290</td>
<td>5.77 x 10^{-12}</td>
<td>5.89 x 10^{-12}</td>
<td>6.02 x 10^{-12}</td>
<td>6.14 x 10^{-12}</td>
<td>6.26 x 10^{-12}</td>
<td>6.38 x 10^{-12}</td>
</tr>
<tr>
<td>298</td>
<td>5.26 x 10^{-12}</td>
<td>5.38 x 10^{-12}</td>
<td>5.50 x 10^{-12}</td>
<td>5.62 x 10^{-12}</td>
<td>5.74 x 10^{-12}</td>
<td>5.86 x 10^{-12}</td>
</tr>
<tr>
<td>300</td>
<td>5.14 x 10^{-12}</td>
<td>5.26 x 10^{-12}</td>
<td>5.38 x 10^{-12}</td>
<td>5.50 x 10^{-12}</td>
<td>5.62 x 10^{-12}</td>
<td>5.74 x 10^{-12}</td>
</tr>
<tr>
<td>310</td>
<td>4.63 x 10^{-12}</td>
<td>4.75 x 10^{-12}</td>
<td>4.87 x 10^{-12}</td>
<td>4.99 x 10^{-12}</td>
<td>5.11 x 10^{-12}</td>
<td>5.23 x 10^{-12}</td>
</tr>
<tr>
<td>325</td>
<td>4.01 x 10^{-12}</td>
<td>4.13 x 10^{-12}</td>
<td>4.25 x 10^{-12}</td>
<td>4.37 x 10^{-12}</td>
<td>4.49 x 10^{-12}</td>
<td>4.61 x 10^{-12}</td>
</tr>
</tbody>
</table>

Table S11. Increase (in percent) of the rate constant of Reaction 5a at different temperatures (T in Kelvin), and relative humidity (%RH).
Table S12. Increase (in percent) of the rate constant of Reaction 2 at different temperatures (T in Kelvin), and relative humidity (%RH).

<table>
<thead>
<tr>
<th>T</th>
<th>20%RH</th>
<th>40%RH</th>
<th>60%RH</th>
<th>80%RH</th>
<th>100%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.00</td>
<td>0.39</td>
<td>0.66</td>
<td>0.99</td>
<td>1.32</td>
<td>1.65</td>
</tr>
<tr>
<td>280.00</td>
<td>0.39</td>
<td>0.78</td>
<td>1.17</td>
<td>1.56</td>
<td>1.95</td>
</tr>
<tr>
<td>290.00</td>
<td>0.52</td>
<td>1.03</td>
<td>1.55</td>
<td>2.07</td>
<td>2.58</td>
</tr>
<tr>
<td>298.00</td>
<td>0.60</td>
<td>1.20</td>
<td>1.79</td>
<td>2.39</td>
<td>2.99</td>
</tr>
<tr>
<td>300.00</td>
<td>0.63</td>
<td>1.26</td>
<td>1.89</td>
<td>2.52</td>
<td>3.15</td>
</tr>
<tr>
<td>310.00</td>
<td>0.81</td>
<td>1.62</td>
<td>2.42</td>
<td>3.23</td>
<td>4.03</td>
</tr>
<tr>
<td>325.00</td>
<td>1.13</td>
<td>2.25</td>
<td>3.37</td>
<td>4.49</td>
<td>5.60</td>
</tr>
</tbody>
</table>

Table S13. Increase (in percent) of the rate constant of Reaction 1 plus Reaction 2 at different temperatures (T in Kelvin), and relative humidity (%RH).

<table>
<thead>
<tr>
<th>T</th>
<th>20%RH</th>
<th>40%RH</th>
<th>60%RH</th>
<th>80%RH</th>
<th>100%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.00</td>
<td>1.72</td>
<td>3.44</td>
<td>5.15</td>
<td>6.87</td>
<td>8.58</td>
</tr>
<tr>
<td>280.00</td>
<td>1.84</td>
<td>3.68</td>
<td>5.51</td>
<td>7.35</td>
<td>9.18</td>
</tr>
<tr>
<td>290.00</td>
<td>2.09</td>
<td>4.17</td>
<td>6.26</td>
<td>8.33</td>
<td>10.41</td>
</tr>
<tr>
<td>298.00</td>
<td>2.28</td>
<td>4.55</td>
<td>6.82</td>
<td>9.08</td>
<td>11.34</td>
</tr>
<tr>
<td>300.00</td>
<td>2.33</td>
<td>4.66</td>
<td>6.99</td>
<td>9.30</td>
<td>11.61</td>
</tr>
<tr>
<td>310.00</td>
<td>2.59</td>
<td>5.18</td>
<td>7.75</td>
<td>10.32</td>
<td>12.88</td>
</tr>
<tr>
<td>325.00</td>
<td>3.02</td>
<td>6.03</td>
<td>9.03</td>
<td>12.01</td>
<td>14.97</td>
</tr>
</tbody>
</table>
Table S14. Absolute energies, enthalpy and free energy corrections (in hartree) and ZPE (in Kcal/mol) and S (in Cal/Mol·Kelvin) \(^{a,b}\)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>-76.32100</td>
<td>13.63</td>
<td>0.02551</td>
<td>0.00410</td>
<td>45.0</td>
<td>-76.06063</td>
<td>-76.34228</td>
<td>-76.06602</td>
<td>-76.36358</td>
</tr>
<tr>
<td>CH(_3)OOH</td>
<td>-190.54940</td>
<td>34.92</td>
<td>0.06085</td>
<td>0.03030</td>
<td>64.3</td>
<td>-189.88092</td>
<td>-190.60555</td>
<td>-189.89298</td>
<td>-190.65514</td>
</tr>
<tr>
<td>OH</td>
<td>-75.62855</td>
<td>5.39</td>
<td>0.01190</td>
<td>-0.00832</td>
<td>42.6</td>
<td>-75.42167</td>
<td>-75.64557</td>
<td>-75.42667</td>
<td>-75.66449</td>
</tr>
<tr>
<td>ACR1</td>
<td>-266.18717</td>
<td>42.13</td>
<td>0.07493</td>
<td>0.03617</td>
<td>81.6</td>
<td>-265.30780</td>
<td>-266.26117</td>
<td>-265.32474</td>
<td>-266.32941</td>
</tr>
<tr>
<td>ACR2</td>
<td>-266.18643</td>
<td>41.88</td>
<td>0.07483</td>
<td>0.03378</td>
<td>86.4</td>
<td>-265.30784</td>
<td>-266.26004</td>
<td>-265.32477</td>
<td>-266.32820</td>
</tr>
<tr>
<td>ATS1a</td>
<td>-266.17519</td>
<td>39.14</td>
<td>0.06926</td>
<td>0.03284</td>
<td>76.7</td>
<td>-265.26911</td>
<td>-266.25071</td>
<td>-265.28595</td>
<td>-266.31894</td>
</tr>
<tr>
<td>ATS1b</td>
<td>-266.02416</td>
<td>39.66</td>
<td>0.07000</td>
<td>0.03362</td>
<td>76.6</td>
<td>-265.26693</td>
<td>-266.25252</td>
<td>-265.28376</td>
<td>-266.32073</td>
</tr>
<tr>
<td>ATS2a</td>
<td>-266.17277</td>
<td>39.91</td>
<td>0.07013</td>
<td>0.03473</td>
<td>74.5</td>
<td>-265.26914</td>
<td>-266.25036</td>
<td>-265.28604</td>
<td>-266.31895</td>
</tr>
<tr>
<td>ATS2b</td>
<td>-266.17241</td>
<td>39.82</td>
<td>0.07004</td>
<td>0.03453</td>
<td>74.7</td>
<td>-265.26886</td>
<td>-266.25010</td>
<td>-265.28576</td>
<td>-266.31866</td>
</tr>
<tr>
<td>CH(_3)OOH(\cdot)H(_2)O</td>
<td>-266.88183</td>
<td>50.87</td>
<td>0.08924</td>
<td>0.05043</td>
<td>81.7</td>
<td>-265.94841</td>
<td>-266.96002</td>
<td>-265.96578</td>
<td>-267.03062</td>
</tr>
</tbody>
</table>

\(^{a}\) Geometries optimized and characterized at QCISD/6-311+G(2df,2p). The ZPE and enthalpic and entropic corrections are obtained at this level of theory.

\(^{b}\) B1 stands for aug-cc-pVTZ; B2 stands for aug-cc-pVQZ basis sets.
Table S15. Absolute energies, enthalpy and free energy corrections (in hartree) and ZPE (in Kcal/mol) and S (in Cal/Mol·Kelvin) a,b

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃OOH</td>
<td>-190.15560</td>
<td>26.65</td>
<td>0.04767</td>
<td>0.01674</td>
<td>65.1</td>
<td>-189.25280</td>
<td>-189.93743</td>
<td>-189.26502</td>
<td>-189.98652</td>
</tr>
<tr>
<td>CH₃OO</td>
<td>-190.18128</td>
<td>28.04</td>
<td>0.04943</td>
<td>0.01905</td>
<td>63.9</td>
<td>-189.28184</td>
<td>-189.95979</td>
<td>-189.29408</td>
<td>-190.00836</td>
</tr>
<tr>
<td>H₂O</td>
<td>-76.41851</td>
<td>13.94</td>
<td>0.02599</td>
<td>0.00461</td>
<td>45.0</td>
<td>-76.06105</td>
<td>-76.34201</td>
<td>-76.06648</td>
<td>-76.36338</td>
</tr>
<tr>
<td>H₂CO</td>
<td>-114.48040</td>
<td>17.37</td>
<td>0.03148</td>
<td>0.00671</td>
<td>52.1</td>
<td>-113.91520</td>
<td>-114.34187</td>
<td>-113.92273</td>
<td>-114.37162</td>
</tr>
<tr>
<td>CH₃OOH</td>
<td>-190.81746</td>
<td>35.81</td>
<td>0.06223</td>
<td>0.03177</td>
<td>64.1</td>
<td>-189.88295</td>
<td>-190.60402</td>
<td>-190.65395</td>
<td>-190.65395</td>
</tr>
<tr>
<td>OH</td>
<td>-75.73240</td>
<td>5.55</td>
<td>0.01216</td>
<td>-0.00805</td>
<td>42.5</td>
<td>-75.42187</td>
<td>-75.64546</td>
<td>-75.64642</td>
<td>-75.64642</td>
</tr>
<tr>
<td>ACR1</td>
<td>-266.55905</td>
<td>43.14</td>
<td>0.07649</td>
<td>0.03791</td>
<td>81.2</td>
<td>-265.30993</td>
<td>-266.25951</td>
<td>-265.32703</td>
<td>-266.32814</td>
</tr>
<tr>
<td>ATS1a</td>
<td>-266.54416</td>
<td>39.73</td>
<td>0.07024</td>
<td>0.03369</td>
<td>76.9</td>
<td>-265.27565</td>
<td>-266.24852</td>
<td>-265.29269</td>
<td>-266.31718</td>
</tr>
<tr>
<td>ACP1</td>
<td>-266.60671</td>
<td>43.69</td>
<td>0.07790</td>
<td>0.03738</td>
<td>85.3</td>
<td>-265.34557</td>
<td>-266.31023</td>
<td>-265.36315</td>
<td>-266.37989</td>
</tr>
<tr>
<td>ACR2</td>
<td>-266.55831</td>
<td>43.05</td>
<td>0.07649</td>
<td>0.03638</td>
<td>84.4</td>
<td>-265.31048</td>
<td>-266.25811</td>
<td>-265.32762</td>
<td>-266.32670</td>
</tr>
<tr>
<td>ATS1b</td>
<td>-266.54442</td>
<td>40.03</td>
<td>0.07074</td>
<td>0.03413</td>
<td>77.1</td>
<td>-265.27489</td>
<td>-266.24907</td>
<td>-265.29195</td>
<td>-266.31779</td>
</tr>
<tr>
<td>ATS2a</td>
<td>-266.54215</td>
<td>40.63</td>
<td>0.07135</td>
<td>0.03569</td>
<td>75.0</td>
<td>-265.26848</td>
<td>-266.24920</td>
<td>-265.28555</td>
<td>-266.31823</td>
</tr>
<tr>
<td>ACP2</td>
<td>-266.58536</td>
<td>42.56</td>
<td>0.07649</td>
<td>0.03470</td>
<td>88.0</td>
<td>-265.32119</td>
<td>-266.29133</td>
<td>-265.33873</td>
<td>-266.36146</td>
</tr>
<tr>
<td>ATS2b</td>
<td>-266.54193</td>
<td>40.55</td>
<td>0.07127</td>
<td>0.03546</td>
<td>75.4</td>
<td>-265.26824</td>
<td>-266.24892</td>
<td>-265.28531</td>
<td>-266.31794</td>
</tr>
<tr>
<td>CH₃OOH···H₂O</td>
<td>-267.24708</td>
<td>52.05</td>
<td>0.09108</td>
<td>0.05238</td>
<td>81.4</td>
<td>-265.95082</td>
<td>-266.95816</td>
<td>-265.96836</td>
<td>-267.02920</td>
</tr>
<tr>
<td>H₂O···OH M1</td>
<td>-152.16086</td>
<td>21.54</td>
<td>0.04040</td>
<td>0.00841</td>
<td>67.3</td>
<td>-151.49003</td>
<td>-151.99686</td>
<td>-151.50043</td>
<td>-152.03708</td>
</tr>
<tr>
<td>H₂O···OH M2</td>
<td>-152.15677</td>
<td>20.91</td>
<td>0.03994</td>
<td>0.00633</td>
<td>70.7</td>
<td>-151.48643</td>
<td>-151.99332</td>
<td>-151.49684</td>
<td>-152.03350</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCR1</td>
<td>TSBCR1</td>
<td>BCR2</td>
<td>TSBCR2</td>
<td>BCR3</td>
<td>BTS1a</td>
<td>BCP1</td>
<td>BTS1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.50</td>
<td>59.12</td>
<td>59.91</td>
<td>59.37</td>
<td>59.62</td>
<td>55.92</td>
<td>59.48</td>
<td>56.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10545</td>
<td>0.10430</td>
<td>0.10563</td>
<td>0.10447</td>
<td>0.10549</td>
<td>0.09878</td>
<td>0.10651</td>
<td>0.09898</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05894</td>
<td>0.05937</td>
<td>0.06076</td>
<td>0.06015</td>
<td>0.05896</td>
<td>0.05553</td>
<td>0.05638</td>
<td>0.05617</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97.9</td>
<td>94.6</td>
<td>94.4</td>
<td>93.3</td>
<td>97.9</td>
<td>91.0</td>
<td>105.5</td>
<td>90.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-341.37828</td>
<td>-341.37900</td>
<td>-341.38288</td>
<td>-341.38106</td>
<td>-341.38105</td>
<td>-341.34118</td>
<td>-341.41465</td>
<td>-341.34162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-341.40120</td>
<td>-341.40143</td>
<td>-342.61452</td>
<td>-341.40343</td>
<td>-341.40346</td>
<td>-341.36350</td>
<td>-341.43755</td>
<td>-341.36392</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>BCP3</td>
<td>BTS1c</td>
<td>BCP2</td>
<td>BTS1b</td>
<td>BCR5</td>
<td>BCR4</td>
<td>BTS1a</td>
<td>BCR2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.77</td>
<td>56.23</td>
<td>59.77</td>
<td>56.15</td>
<td>59.48</td>
<td>59.08</td>
<td>55.92</td>
<td>59.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10665</td>
<td>0.09943</td>
<td>0.10663</td>
<td>0.09898</td>
<td>0.10651</td>
<td>0.10533</td>
<td>0.09878</td>
<td>0.10563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05762</td>
<td>0.05537</td>
<td>0.05832</td>
<td>0.05553</td>
<td>0.05638</td>
<td>0.05508</td>
<td>0.05878</td>
<td>0.06076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103.2</td>
<td>92.7</td>
<td>101.7</td>
<td>90.1</td>
<td>105.5</td>
<td>105.8</td>
<td>91.0</td>
<td>94.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-341.41367</td>
<td>-341.34063</td>
<td>-341.41587</td>
<td>-341.34162</td>
<td>-341.41465</td>
<td>-341.37986</td>
<td>-341.34118</td>
<td>-341.38288</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>BCR6</td>
<td>TSBCR5</td>
<td>BCR7</td>
<td>TSBCR6</td>
<td>BCR8</td>
<td>TSBCR7</td>
<td>BCR6</td>
<td>TSBCR5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.35</td>
<td>59.28</td>
<td>59.62</td>
<td>59.18</td>
<td>59.79</td>
<td>59.42</td>
<td>59.35</td>
<td>59.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10527</td>
<td>0.10428</td>
<td>0.10547</td>
<td>0.10434</td>
<td>0.10554</td>
<td>0.10445</td>
<td>0.10527</td>
<td>0.10542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05820</td>
<td>0.06034</td>
<td>0.05971</td>
<td>0.05981</td>
<td>0.06038</td>
<td>0.06029</td>
<td>0.05820</td>
<td>0.05899</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.1</td>
<td>92.5</td>
<td>96.3</td>
<td>93.7</td>
<td>92.9</td>
<td>92.9</td>
<td>97.7</td>
<td>94.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-341.37969</td>
<td>-341.37979</td>
<td>-341.38248</td>
<td>-341.38080</td>
<td>-341.38260</td>
<td>-341.38105</td>
<td>-341.38285</td>
<td>-341.38094</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>BTS2a</td>
<td>-342.97917</td>
<td>57.68</td>
<td>0.10104</td>
<td>0.05915</td>
<td>88.2</td>
<td>-341.34552</td>
<td>-342.60871</td>
<td>-341.36790</td>
<td>-342.69858</td>
</tr>
<tr>
<td>BCP4</td>
<td>-343.01964</td>
<td>59.66</td>
<td>0.10563</td>
<td>0.06047</td>
<td>95.0</td>
<td>-341.39023</td>
<td>-342.65066</td>
<td>-341.41297</td>
<td>-342.74164</td>
</tr>
<tr>
<td>BTS2b</td>
<td>-342.97830</td>
<td>57.67</td>
<td>0.10111</td>
<td>0.05899</td>
<td>88.7</td>
<td>-341.34508</td>
<td>-342.60768</td>
<td>-341.36748</td>
<td>-342.69753</td>
</tr>
<tr>
<td>BCP5</td>
<td>-343.01881</td>
<td>59.38</td>
<td>0.10545</td>
<td>0.05936</td>
<td>97.0</td>
<td>-341.38975</td>
<td>-342.64975</td>
<td>-341.41251</td>
<td>-342.74076</td>
</tr>
<tr>
<td>BTS2c</td>
<td>-342.97851</td>
<td>57.72</td>
<td>0.10117</td>
<td>0.05908</td>
<td>88.6</td>
<td>-341.34557</td>
<td>-342.60769</td>
<td>-341.36797</td>
<td>-342.69756</td>
</tr>
<tr>
<td>BCP6</td>
<td>-343.01904</td>
<td>59.59</td>
<td>0.10556</td>
<td>0.06021</td>
<td>95.4</td>
<td>-341.38980</td>
<td>-342.64994</td>
<td>-341.41256</td>
<td>-342.74094</td>
</tr>
<tr>
<td>BTS2d</td>
<td>-342.97788</td>
<td>57.47</td>
<td>0.10092</td>
<td>0.05846</td>
<td>89.4</td>
<td>-341.34474</td>
<td>-342.60728</td>
<td>-341.36715</td>
<td>-342.69718</td>
</tr>
<tr>
<td>BCP7</td>
<td>-343.01827</td>
<td>59.34</td>
<td>0.10540</td>
<td>0.05923</td>
<td>97.2</td>
<td>-341.38928</td>
<td>-342.64917</td>
<td>-341.41206</td>
<td>-342.74019</td>
</tr>
</tbody>
</table>

a) Geometries optimized and characterized at BH&HLYP/6-311+G(2df,2p). The ZPE and enthalpic and entropic corrections are obtained at this level of theory.

b) B1 stands for aug-cc-pVTZ; B2 stands for aug-cc-pVQZ basis sets.
Table S16. Cartesian coordinates (in Å) optimized at QCISD(6-311+G(2df,2p)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.005942</td>
<td>0.000570</td>
<td>-0.004581</td>
</tr>
<tr>
<td>H</td>
<td>-0.000155</td>
<td>-0.000416</td>
<td>1.083959</td>
</tr>
<tr>
<td>O</td>
<td>1.373594</td>
<td>0.004837</td>
<td>-0.360393</td>
</tr>
<tr>
<td>H</td>
<td>-0.497846</td>
<td>-0.890681</td>
<td>-0.381493</td>
</tr>
<tr>
<td>H</td>
<td>-0.493256</td>
<td>0.894677</td>
<td>-0.377363</td>
</tr>
<tr>
<td>O</td>
<td>1.405910</td>
<td>0.075320</td>
<td>-1.796534</td>
</tr>
<tr>
<td>H</td>
<td>1.837367</td>
<td>-0.758922</td>
<td>-2.004562</td>
</tr>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.107651</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.861206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.012748</td>
<td>0.530249</td>
<td>-0.859809</td>
</tr>
<tr>
<td>O</td>
<td>0.106172</td>
<td>0.865468</td>
<td>-0.864812</td>
</tr>
<tr>
<td>O</td>
<td>2.324423</td>
<td>-0.469937</td>
<td>0.577557</td>
</tr>
<tr>
<td>H</td>
<td>1.446754</td>
<td>-0.347178</td>
<td>0.982779</td>
</tr>
<tr>
<td>O</td>
<td>-0.409286</td>
<td>0.252201</td>
<td>0.329633</td>
</tr>
<tr>
<td>C</td>
<td>-1.445114</td>
<td>-0.618570</td>
<td>-0.091263</td>
</tr>
<tr>
<td>H</td>
<td>-1.856780</td>
<td>-1.033319</td>
<td>0.827156</td>
</tr>
<tr>
<td>H</td>
<td>-2.213140</td>
<td>-0.061961</td>
<td>-0.625625</td>
</tr>
<tr>
<td>H</td>
<td>-1.053466</td>
<td>-1.415865</td>
<td>-0.723573</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.819473</td>
<td>-0.263910</td>
<td>0.595059</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C</td>
<td>-0.113348</td>
<td>0.024633</td>
<td>1.372703</td>
</tr>
<tr>
<td>O</td>
<td>0.920010</td>
<td>-0.102705</td>
<td>-2.341055</td>
</tr>
<tr>
<td>H</td>
<td>1.222019</td>
<td>-0.483796</td>
<td>-1.499416</td>
</tr>
<tr>
<td>H</td>
<td>-0.326682</td>
<td>1.036706</td>
<td>1.710039</td>
</tr>
<tr>
<td>H</td>
<td>-0.165189</td>
<td>-0.671820</td>
<td>2.209211</td>
</tr>
<tr>
<td>O</td>
<td>1.202502</td>
<td>0.093415</td>
<td>0.851494</td>
</tr>
<tr>
<td>O</td>
<td>1.486345</td>
<td>-1.225526</td>
<td>0.339867</td>
</tr>
<tr>
<td>H</td>
<td>2.323417</td>
<td>-1.409468</td>
<td>0.777618</td>
</tr>
</tbody>
</table>

ATS1a

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.946323</td>
<td>0.167224</td>
<td>-0.386682</td>
</tr>
<tr>
<td>O</td>
<td>0.181335</td>
<td>0.911516</td>
<td>-0.334915</td>
</tr>
<tr>
<td>O</td>
<td>1.968787</td>
<td>-0.512402</td>
<td>-0.028813</td>
</tr>
<tr>
<td>H</td>
<td>2.158469</td>
<td>-0.139145</td>
<td>0.843276</td>
</tr>
<tr>
<td>O</td>
<td>-0.757920</td>
<td>0.356789</td>
<td>0.558663</td>
</tr>
<tr>
<td>C</td>
<td>-1.520800</td>
<td>-0.592965</td>
<td>-0.174161</td>
</tr>
<tr>
<td>H</td>
<td>-2.263310</td>
<td>-0.953478</td>
<td>0.531926</td>
</tr>
<tr>
<td>H</td>
<td>-2.003989</td>
<td>-0.117792</td>
<td>-1.024289</td>
</tr>
<tr>
<td>H</td>
<td>-0.889530</td>
<td>-1.416183</td>
<td>-0.505981</td>
</tr>
</tbody>
</table>

ATS1b

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.884281</td>
<td>0.221328</td>
<td>-0.340044</td>
</tr>
<tr>
<td>O</td>
<td>0.136065</td>
<td>0.995904</td>
<td>-0.306321</td>
</tr>
<tr>
<td>O</td>
<td>1.974709</td>
<td>-0.453247</td>
<td>-0.126934</td>
</tr>
<tr>
<td>H</td>
<td>2.130278</td>
<td>-0.376044</td>
<td>0.825329</td>
</tr>
<tr>
<td>O</td>
<td>-0.836704</td>
<td>0.468499</td>
<td>0.528628</td>
</tr>
<tr>
<td>C</td>
<td>-1.491757</td>
<td>-0.593969</td>
<td>-0.161268</td>
</tr>
</tbody>
</table>
H -2.255985 -0.951972 0.523970
H -1.941212 -0.217645 -1.078193
H -0.780310 -1.389290 -0.386140

ATS2a
H -0.875154 0.669892 0.244967
C 0.235094 1.096888 0.247279
O -1.846409 -0.325290 0.029386
H -2.061992 -0.048054 -0.873054
H 0.254707 2.055941 -0.263576
H 0.507275 1.149127 1.300949
O 1.019243 0.215853 -0.474383
O 0.985725 -1.032156 0.225085
H 0.057407 -1.287394 0.093038

ATS2b
H 0.055613 0.068103 0.100370
C 0.013353 0.019159 1.288041
O 0.639383 -0.163753 -1.158111
H 0.041338 -0.873461 -1.433114
H -0.488091 0.916967 1.640312
H -0.493682 -0.906679 1.555637
O 1.322710 0.066508 1.729305
O 1.957080 -1.131312 1.271811
H 2.013395 -0.947905 0.319852

CH3OOH···H2O
C -0.030331 0.011752 -0.019633
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.032600</td>
<td>-0.028011</td>
<td>1.068611</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.335088</td>
<td>0.098537</td>
<td>-0.384707</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.488262</td>
<td>-0.889449</td>
<td>-0.429392</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.572057</td>
<td>0.892792</td>
<td>-0.360774</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.358980</td>
<td>0.215746</td>
<td>-1.817043</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.723050</td>
<td>-0.650203</td>
<td>-2.052821</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.504586</td>
<td>-2.308896</td>
<td>-1.258216</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.464880</td>
<td>-1.744998</td>
<td>-0.480324</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.411007</td>
<td>-2.610323</td>
<td>-1.312010</td>
<td></td>
</tr>
</tbody>
</table>

Table S17 Cartesian coordinates (in Å) optimized at BH&HLYP/6-311+G(2df,2p)

CH3OOH

<table>
<thead>
<tr>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.004755</td>
<td>-0.000652</td>
<td>1.081645</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.355970</td>
<td>0.008035</td>
<td>-0.357436</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.498254</td>
<td>-0.887750</td>
<td>-0.371680</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.499454</td>
<td>0.885732</td>
<td>-0.369381</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.414885</td>
<td>0.080065</td>
<td>-1.765188</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.836134</td>
<td>-0.745684</td>
<td>-1.987898</td>
<td></td>
</tr>
</tbody>
</table>

CH2OOH

<table>
<thead>
<tr>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0.227111</td>
<td>-0.383680</td>
<td>1.282025</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.425804</td>
<td>0.207055</td>
<td>1.716539</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.126348</td>
<td>0.765570</td>
<td>2.430721</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.605208</td>
<td>0.597538</td>
<td>-0.502391</td>
<td></td>
</tr>
</tbody>
</table>
H -1.039221 -0.290814 -0.271231

CH3OO
O -1.196699 0.069728 0.000000
O 0.000000 0.554363 0.000000
C 0.983042 -0.476633 0.000000
H 1.936745 0.028175 0.000000
H 0.869295 -1.080552 0.888216
H 0.869295 -1.080552 -0.888216

H2O
H 0.000000 0.757548 -0.457704
O 0.000000 0.000000 0.114426
H 0.000000 -0.757548 -0.457704

H2CO
C 0.000000 0.000000 -0.520956
O 0.000000 0.000000 0.665681
H 0.000000 0.930143 -1.099855
H 0.000000 -0.930143 -1.099855

ACRI
H 0.943211 0.571695 -0.823244
O 0.038148 0.881297 -0.763690
O 2.273117 -0.533000 0.491396
H 1.405442 -0.492468 0.917622
O -0.446432 0.138051 0.334171
<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.533187</td>
<td>-0.623016</td>
<td>-0.124323</td>
</tr>
<tr>
<td>H</td>
<td>-1.911847</td>
<td>-1.136579</td>
<td>0.748901</td>
</tr>
<tr>
<td>H</td>
<td>-2.300432</td>
<td>0.022245</td>
<td>-0.531896</td>
</tr>
<tr>
<td>H</td>
<td>-1.218839</td>
<td>-1.341136</td>
<td>-0.872425</td>
</tr>
</tbody>
</table>

ATS1a

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>O</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.918231</td>
<td>0.200274</td>
<td>-0.318135</td>
</tr>
<tr>
<td>O</td>
<td>0.148843</td>
<td>0.905209</td>
<td>-0.269035</td>
</tr>
<tr>
<td>O</td>
<td>1.992620</td>
<td>-0.530807</td>
<td>-0.032702</td>
</tr>
<tr>
<td>H</td>
<td>2.332925</td>
<td>-0.141580</td>
<td>0.774448</td>
</tr>
<tr>
<td>O</td>
<td>-0.814375</td>
<td>0.368956</td>
<td>0.538798</td>
</tr>
<tr>
<td>C</td>
<td>-1.545847</td>
<td>-0.593159</td>
<td>-0.182742</td>
</tr>
<tr>
<td>H</td>
<td>-2.318949</td>
<td>-0.929817</td>
<td>0.492835</td>
</tr>
<tr>
<td>H</td>
<td>-1.985809</td>
<td>-0.149815</td>
<td>-1.066361</td>
</tr>
<tr>
<td>H</td>
<td>-0.908274</td>
<td>-1.425696</td>
<td>-0.458081</td>
</tr>
</tbody>
</table>

ACP1

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>O</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.364646</td>
<td>-0.034221</td>
<td>-0.078253</td>
</tr>
<tr>
<td>O</td>
<td>-0.218942</td>
<td>1.249343</td>
<td>0.226339</td>
</tr>
<tr>
<td>O</td>
<td>1.812296</td>
<td>-0.857506</td>
<td>-0.257053</td>
</tr>
<tr>
<td>H</td>
<td>2.741004</td>
<td>-0.664168</td>
<td>-0.261112</td>
</tr>
<tr>
<td>O</td>
<td>-1.402418</td>
<td>0.744885</td>
<td>0.171602</td>
</tr>
<tr>
<td>C</td>
<td>-1.383881</td>
<td>-0.660575</td>
<td>-0.093038</td>
</tr>
<tr>
<td>H</td>
<td>-2.420052</td>
<td>-0.958836</td>
<td>-0.116039</td>
</tr>
<tr>
<td>H</td>
<td>-0.904767</td>
<td>-0.839809</td>
<td>-1.043422</td>
</tr>
<tr>
<td>H</td>
<td>-0.849529</td>
<td>-1.166484</td>
<td>0.696569</td>
</tr>
</tbody>
</table>
ACR2

H 0.938516 -0.769263 -1.203215
O 0.162000 -0.311210 -0.890933
O -0.158708 2.539574 -1.431831
H -0.031049 1.603918 -1.223602
O 0.287254 -0.421048 0.510631
C -0.825995 -1.140657 0.972432
H -0.716041 -1.159643 2.047814
H -1.746685 -0.637323 0.706137
H -0.827584 -2.151529 0.582159

ATS1b

H 0.356297 0.016805 0.005209
O -0.107265 -0.050654 0.944083
O 0.405381 -0.077977 -1.310393
H -0.401888 0.322312 -1.635373
O 0.182218 -1.305274 1.399499
C -0.963240 -2.110792 1.279742
H -0.694849 -3.057800 1.725305
H -1.796247 -1.668837 1.810861
H -1.215290 -2.250562 0.234611

ATS2a

H -0.882722 0.643753 0.226345
C 0.235034 1.083179 0.240500
O -1.864417 -0.271999 0.023731
H -2.126507 0.012252 -0.853017
H 0.249177 2.028817 -0.280451
H 0.475716 1.154311 1.294042
O 1.029434 0.205544 -0.443029
O 1.023452 -1.016910 0.247488
H 0.136728 -1.344136 0.074083

ACP2

H -2.551008 0.093495 0.114701
C 0.965232 1.481269 0.387512
O -2.208315 -0.755055 -0.143075
H -2.418543 -0.858275 -1.064313
H 1.264466 2.368290 -0.135961
H 1.298469 1.258591 1.382056
O 0.793536 0.442203 -0.449286
O 0.554859 -0.729822 0.288316
H -0.398589 -0.833379 0.181796

ATS2b

H 0.065762 0.049664 0.080914
C 0.021050 0.010946 1.281050
O 0.573648 -0.140030 -1.161787
H -0.003435 -0.848998 -1.448336
H -0.475069 0.911553 1.611601
H -0.494656 -0.902196 1.548458
O 1.315186 0.052360 1.719102
O 1.954936 -1.127495 1.308259
H 2.103677 -0.958179 0.374841
CH₃OOH···H₂O

C -0.055908 0.037944 -0.014630
H -0.057035 -0.008538 1.066290
O 1.295421 0.024627 -0.388174
H -0.582868 -0.816785 -0.423043
H -0.531604 0.953722 -0.342148
O 1.343763 0.150826 -1.792817
H 1.722939 -0.695779 -2.043062
O 2.571118 -2.313230 -1.277915
H 2.480741 -1.797299 -0.480435
H 3.487773 -2.548540 -1.350375

H₂O···OH (M₁)
O -0.026398 -1.255022 0.000000
H -0.042831 0.645975 0.000000
H 0.232599 -1.758560 0.762530
H 0.232599 -1.758560 -0.762530
O -0.026398 1.613915 0.000000

H₂O···OH (M₂)
O -0.005529 -1.423906 0.000000
H 0.790443 -1.939797 0.000000
H 0.265764 -0.510289 0.000000
O -0.005529 1.534118 0.000000
H -0.967739 1.568395 0.000000
BCR1

C 0.056343 -0.739035 -1.695688
O 0.598399 -1.157413 -0.463894
H 0.906382 -0.429009 -2.288328
H -0.448306 -1.564520 -2.178987
H -0.622588 0.093816 -1.559258
O -0.455561 -1.667320 0.319537
H -0.591863 -0.969252 0.961106
O -0.801558 2.610069 -0.085405
H -0.271325 2.091616 0.538831
O 0.714300 0.774886 1.461025
H 1.134326 0.201093 0.818091
H 1.315095 0.889903 2.186886

TSBCR1BCR2

C -0.104997 0.167100 0.020481
O 0.317127 -0.197364 1.314926
H 0.798248 0.449614 -0.503152
H -0.567793 -0.678022 -0.470762
H -0.789415 1.005523 0.060237
O -0.807069 -0.650549 2.028519
H -1.060292 0.118430 2.538783
O -1.181650 3.253762 1.767689
H -0.480349 2.921712 2.349869
O 0.719766 1.781329 3.192095
H 0.965212 1.079900 2.586899
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.379723</td>
<td>1.830825</td>
<td>3.871568</td>
</tr>
<tr>
<td>BCR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.246779</td>
<td>-0.931986</td>
<td>-1.799014</td>
</tr>
<tr>
<td>O</td>
<td>0.244648</td>
<td>-0.820690</td>
<td>-0.399188</td>
</tr>
<tr>
<td>H</td>
<td>1.284341</td>
<td>-0.855134</td>
<td>-2.094993</td>
</tr>
<tr>
<td>H</td>
<td>-0.153069</td>
<td>-1.891461</td>
<td>-2.099600</td>
</tr>
<tr>
<td>H</td>
<td>-0.327200</td>
<td>-0.133059</td>
<td>-2.253192</td>
</tr>
<tr>
<td>O</td>
<td>-1.079874</td>
<td>-0.981026</td>
<td>0.049165</td>
</tr>
<tr>
<td>H</td>
<td>-1.328273</td>
<td>-0.081058</td>
<td>0.291349</td>
</tr>
<tr>
<td>O</td>
<td>-1.338386</td>
<td>1.706967</td>
<td>1.006022</td>
</tr>
<tr>
<td>H</td>
<td>-0.389055</td>
<td>1.711020</td>
<td>1.233968</td>
</tr>
<tr>
<td>O</td>
<td>1.334253</td>
<td>1.148954</td>
<td>1.276274</td>
</tr>
<tr>
<td>H</td>
<td>1.199955</td>
<td>0.355417</td>
<td>0.753677</td>
</tr>
<tr>
<td>H</td>
<td>1.842600</td>
<td>0.905215</td>
<td>2.039629</td>
</tr>
</tbody>
</table>

TSBCR2BCR3			
C	-0.003033	0.004942	0.023186
O	-0.051319	0.047145	1.423544
H	1.048734	0.032620	-0.227899
H	-0.447235	-0.909925	-0.348678
H	-0.506902	0.861654	-0.409008
O	-1.405547	-0.049713	1.809654
H	-1.585192	0.836919	2.141036
O	-1.378197	2.310085	3.431900
H	-0.863008	1.695593	3.987062
O	-0.043145	0.126410	4.489544
H -0.165905 -0.362104 3.678174
H 0.876136 0.050973 4.714483

BCR3
H 0.314223 0.535159 -0.858659
O 0.954285 0.518886 -0.138800
O -0.735518 -0.397870 -2.277981
H -0.266901 -1.213974 -2.024558
O 0.133740 0.379042 0.999668
C 0.124130 1.610545 1.669503
H -0.474790 1.446512 2.555065
H 1.127855 1.903118 1.951817
H -0.327673 2.384298 1.059247
O 0.991884 -2.190345 -1.067784
H 1.250756 -1.468799 -0.493701
H 0.873069 -2.956155 -0.520083

BTS1a
C -0.050285 -0.053598 -0.072896
O -0.004265 0.150523 1.322556
H 0.973277 0.025199 -0.410406
H -0.442078 -1.037550 -0.291034
H -0.659185 0.708325 -0.543640
O -1.257167 -0.002536 1.848962
H -1.792382 0.919046 1.652356
O -2.158177 2.120026 1.632387
H -1.459441 2.560314 2.136145
O 0.315574 2.596769 2.879071
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.600032</td>
<td>1.777038</td>
<td>2.479701</td>
</tr>
<tr>
<td>H</td>
<td>1.033340</td>
<td>3.211648</td>
<td>2.795958</td>
</tr>
<tr>
<td>BCP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.376129</td>
<td>-1.179110</td>
<td>-1.517226</td>
</tr>
<tr>
<td>O</td>
<td>1.215598</td>
<td>-0.959793</td>
<td>-0.376984</td>
</tr>
<tr>
<td>H</td>
<td>0.751870</td>
<td>-0.518071</td>
<td>-2.282472</td>
</tr>
<tr>
<td>H</td>
<td>0.463894</td>
<td>-2.212427</td>
<td>-1.814803</td>
</tr>
<tr>
<td>H</td>
<td>-0.636861</td>
<td>-0.912745</td>
<td>-1.259255</td>
</tr>
<tr>
<td>O</td>
<td>1.061602</td>
<td>-1.870044</td>
<td>0.527773</td>
</tr>
<tr>
<td>H</td>
<td>-1.992247</td>
<td>1.998434</td>
<td>-0.456560</td>
</tr>
<tr>
<td>O</td>
<td>-1.447044</td>
<td>1.232856</td>
<td>-0.331113</td>
</tr>
<tr>
<td>H</td>
<td>-0.725937</td>
<td>1.503112</td>
<td>0.240091</td>
</tr>
<tr>
<td>O</td>
<td>0.962516</td>
<td>1.577694</td>
<td>1.140294</td>
</tr>
<tr>
<td>H</td>
<td>1.326187</td>
<td>0.784983</td>
<td>0.753135</td>
</tr>
<tr>
<td>H</td>
<td>1.014828</td>
<td>1.459493</td>
<td>2.081027</td>
</tr>
<tr>
<td>BTS1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.008457</td>
<td>0.014671</td>
<td>0.027233</td>
</tr>
<tr>
<td>O</td>
<td>-0.012352</td>
<td>-0.006642</td>
<td>1.438926</td>
</tr>
<tr>
<td>H</td>
<td>1.054028</td>
<td>0.021632</td>
<td>-0.245007</td>
</tr>
<tr>
<td>H</td>
<td>-0.476235</td>
<td>-0.869426</td>
<td>-0.363318</td>
</tr>
<tr>
<td>H</td>
<td>-0.479526</td>
<td>0.908292</td>
<td>-0.341045</td>
</tr>
<tr>
<td>O</td>
<td>-1.305308</td>
<td>-0.080235</td>
<td>1.878969</td>
</tr>
<tr>
<td>H</td>
<td>-1.715080</td>
<td>0.924082</td>
<td>1.803174</td>
</tr>
<tr>
<td>O</td>
<td>-1.925709</td>
<td>2.146240</td>
<td>1.961717</td>
</tr>
<tr>
<td>H</td>
<td>-1.178448</td>
<td>2.419784</td>
<td>2.513268</td>
</tr>
<tr>
<td>O</td>
<td>0.582232</td>
<td>2.191389</td>
<td>3.226657</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>0.721844</td>
<td>1.360515</td>
<td>2.775280</td>
</tr>
<tr>
<td>H</td>
<td>0.735009</td>
<td>2.029206</td>
<td>4.149561</td>
</tr>
<tr>
<td>BCP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.017453</td>
<td>-1.030189</td>
<td>-1.441826</td>
</tr>
<tr>
<td>O</td>
<td>0.786652</td>
<td>-1.179937</td>
<td>-0.265555</td>
</tr>
<tr>
<td>H</td>
<td>-0.477871</td>
<td>-0.057992</td>
<td>-1.354877</td>
</tr>
<tr>
<td>H</td>
<td>0.623683</td>
<td>-1.088734</td>
<td>-2.308634</td>
</tr>
<tr>
<td>H</td>
<td>-0.756302</td>
<td>-1.817220</td>
<td>-1.458404</td>
</tr>
<tr>
<td>O</td>
<td>1.396171</td>
<td>-2.318297</td>
<td>-0.222365</td>
</tr>
<tr>
<td>H</td>
<td>-1.002111</td>
<td>2.857146</td>
<td>-0.470024</td>
</tr>
<tr>
<td>O</td>
<td>-1.007958</td>
<td>1.926673</td>
<td>-0.286917</td>
</tr>
<tr>
<td>H</td>
<td>-0.430181</td>
<td>1.793818</td>
<td>0.467111</td>
</tr>
<tr>
<td>O</td>
<td>0.829322</td>
<td>1.029092</td>
<td>1.665840</td>
</tr>
<tr>
<td>H</td>
<td>0.995183</td>
<td>0.206032</td>
<td>1.210625</td>
</tr>
<tr>
<td>H</td>
<td>0.645235</td>
<td>0.806359</td>
<td>2.569946</td>
</tr>
<tr>
<td>BTS1c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.031987</td>
<td>-0.161649</td>
<td>-0.088047</td>
</tr>
<tr>
<td>O</td>
<td>0.294809</td>
<td>-0.337279</td>
<td>0.948062</td>
</tr>
<tr>
<td>O</td>
<td>0.283631</td>
<td>0.099273</td>
<td>-1.294880</td>
</tr>
<tr>
<td>H</td>
<td>1.098467</td>
<td>-0.390847</td>
<td>-1.458766</td>
</tr>
<tr>
<td>O</td>
<td>0.135685</td>
<td>0.860116</td>
<td>1.583152</td>
</tr>
<tr>
<td>C</td>
<td>1.381725</td>
<td>1.504789</td>
<td>1.681874</td>
</tr>
<tr>
<td>H</td>
<td>1.189420</td>
<td>2.414340</td>
<td>2.232207</td>
</tr>
<tr>
<td>H</td>
<td>2.090062</td>
<td>0.887138</td>
<td>2.219974</td>
</tr>
<tr>
<td>H</td>
<td>1.760545</td>
<td>1.739589</td>
<td>0.694048</td>
</tr>
<tr>
<td>O</td>
<td>2.567450</td>
<td>-1.427549</td>
<td>-0.564341</td>
</tr>
</tbody>
</table>
H 2.120960 -1.363479 0.276130
H 2.835629 -2.332481 -0.665797

BCP3
H -0.682548 0.318347 -2.859428
O 0.106211 -0.807644 1.858128
O -0.251064 0.500283 -2.035038
H 0.246388 -0.286280 -1.804439
O -0.186846 0.410510 2.146117
C 0.198782 1.328968 1.116187
H -0.081920 2.301703 1.488014
H 1.267858 1.267609 0.974687
H -0.323220 1.095488 0.200594
O 1.183095 -1.566738 -0.748513
H 0.869701 -1.404500 0.141326
H 1.274277 -2.506526 -0.841252

BCR4
C -0.450586 -0.426638 0.435382
H -0.374439 -0.328913 1.509840
O 0.805540 -0.045894 -0.058015
H -0.679062 -1.452480 0.171095
H -1.225003 0.231660 0.061896
O 0.736451 -0.105981 -1.467419
H 1.417061 -0.763194 -1.659161
O 2.870255 -1.851850 -1.428581
H 3.124679 -1.617203 -0.542192
H 3.642681 -1.736818 -1.970075
H 1.306339 1.652314 -1.936937
O 1.659150 2.516622 -2.198543

TS-BCR4-BCR5
C 0.076791 -0.033285 -0.037221
H 0.107060 -0.079200 1.042970
O 1.418566 -0.037423 -0.442741
H -0.452784 -0.893347 -0.430191
H -0.416766 0.878025 -0.351442
O 1.429516 0.075331 -1.850651
H 1.873225 -0.744865 -2.102690
O 2.970547 -2.199231 -2.163043
H 3.282614 -2.281252 -1.268080
H 3.744291 -2.093502 -2.705433
H 2.743754 1.436309 -2.106773
O 3.502325 2.011981 -2.290537

BCR5
C 0.001949 -0.001003 -0.001098
H 0.001346 -0.002461 1.080490
O 1.354500 -0.002732 -0.366923
H -0.504941 -0.884889 -0.371231
H -0.495617 0.888411 -0.367811
O 1.409259 0.056230 -1.775539
H 1.790597 -0.800039 -2.009016
O 3.181518 -1.848651 -2.678852
H 3.590390 -2.621996 -2.311089
H 3.834960 -1.149149 -2.667646
H 3.131654 0.917437 -2.104666
O 4.068512 0.895924 -2.363084

TS-BCR5BCR6
C -0.020482 0.002829 0.042628
H -0.003169 0.088206 1.120664
O 1.318281 0.116669 -0.355257
H -0.435618 -0.957511 -0.242491
H -0.618654 0.803127 -0.377025
O 1.359831 0.057721 -1.756758
H 1.661353 -0.834344 -1.958520
O 1.781386 -2.116836 -3.381567
H 1.422133 -1.534217 -4.050209
H 2.540104 -2.542877 -3.760239
O 0.506336 0.304617 -4.404116
H 0.621691 0.558768 -3.475297

BCR6
C -1.093774 1.576187 1.091858
H -1.113837 2.538452 1.585135
O -0.122071 1.698041 0.090096
H -0.828674 0.804446 1.806243
H -2.067427 1.366548 0.664181
O -0.075845 0.488297 -0.621420
H 0.706395 0.038139 -0.284670
O 1.512228 -1.679152 -0.028423
H 0.802326 -2.182158 -0.426303
H 2.328488 -2.042779 -0.347786
O -1.155285 -2.051797 -1.142434
H -1.120413 -1.087036 -1.042660

TSBCR5BCT7
C 0.004332 0.001558 -0.000820
H 0.016032 0.013248 1.080620
O 1.351362 0.005090 -0.385456
H -0.498155 -0.890571 -0.355842
H -0.504615 0.882306 -0.372706
O 1.388068 0.051611 -1.798112
H 1.859251 -0.764999 -2.010244
O 3.363849 -1.823325 -2.215937
H 3.552616 -2.654451 -1.798652
H 3.958751 -1.175902 -1.836396
H 3.236559 0.903669 -1.189745
O 4.190738 0.747445 -1.155265

BCR7
C 0.012985 0.021340 -0.010729
O 0.013570 0.013990 1.392449
H 1.028065 0.029445 -0.385550
H -0.492311 0.933696 -0.298073
H -0.518641 -0.837378 -0.403288
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0.724793</td>
<td>-1.123493</td>
<td>1.820420</td>
</tr>
<tr>
<td>H</td>
<td>0.029761</td>
<td>-1.665225</td>
<td>2.217286</td>
</tr>
<tr>
<td>O</td>
<td>-2.057669</td>
<td>0.498672</td>
<td>3.222759</td>
</tr>
<tr>
<td>H</td>
<td>-1.298470</td>
<td>0.515789</td>
<td>2.614110</td>
</tr>
<tr>
<td>O</td>
<td>-1.405052</td>
<td>-2.273520</td>
<td>3.165824</td>
</tr>
<tr>
<td>H</td>
<td>-1.876185</td>
<td>-1.472167</td>
<td>3.397927</td>
</tr>
<tr>
<td>H</td>
<td>-2.047626</td>
<td>-2.957592</td>
<td>3.028808</td>
</tr>
<tr>
<td>C</td>
<td>0.032603</td>
<td>0.028830</td>
<td>1.429547</td>
</tr>
<tr>
<td>H</td>
<td>1.057673</td>
<td>-0.056993</td>
<td>-0.394700</td>
</tr>
<tr>
<td>H</td>
<td>-0.561581</td>
<td>0.846983</td>
<td>-0.284594</td>
</tr>
<tr>
<td>H</td>
<td>-0.583921</td>
<td>-0.927099</td>
<td>-0.285080</td>
</tr>
<tr>
<td>O</td>
<td>0.770556</td>
<td>-1.078234</td>
<td>1.888757</td>
</tr>
<tr>
<td>H</td>
<td>0.088953</td>
<td>-1.628833</td>
<td>2.294366</td>
</tr>
<tr>
<td>O</td>
<td>-2.034523</td>
<td>0.543918</td>
<td>3.261951</td>
</tr>
<tr>
<td>H</td>
<td>-1.280386</td>
<td>0.540675</td>
<td>2.646424</td>
</tr>
<tr>
<td>O</td>
<td>-1.380980</td>
<td>-2.212884</td>
<td>3.212784</td>
</tr>
<tr>
<td>H</td>
<td>-1.867542</td>
<td>-1.426984</td>
<td>3.462860</td>
</tr>
<tr>
<td>H</td>
<td>-1.942773</td>
<td>-2.955561</td>
<td>3.341253</td>
</tr>
<tr>
<td>C</td>
<td>-0.050235</td>
<td>-0.084457</td>
<td>0.056441</td>
</tr>
<tr>
<td>O</td>
<td>0.023914</td>
<td>0.040956</td>
<td>1.453342</td>
</tr>
<tr>
<td>H</td>
<td>0.944166</td>
<td>-0.129725</td>
<td>-0.367518</td>
</tr>
<tr>
<td>H</td>
<td>-0.558238</td>
<td>0.805733</td>
<td>-0.289721</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>H</td>
<td>-0.613901</td>
<td>-0.966195</td>
<td>-0.224055</td>
</tr>
<tr>
<td>O</td>
<td>0.739660</td>
<td>-1.061860</td>
<td>1.955568</td>
</tr>
<tr>
<td>H</td>
<td>0.036765</td>
<td>-1.612808</td>
<td>2.326244</td>
</tr>
<tr>
<td>O</td>
<td>-1.995268</td>
<td>0.559152</td>
<td>3.330905</td>
</tr>
<tr>
<td>H</td>
<td>-1.273509</td>
<td>0.567083</td>
<td>2.677464</td>
</tr>
<tr>
<td>O</td>
<td>-1.516267</td>
<td>-2.231805</td>
<td>3.074211</td>
</tr>
<tr>
<td>H</td>
<td>-1.905384</td>
<td>-1.418216</td>
<td>3.399273</td>
</tr>
<tr>
<td>H</td>
<td>-1.578484</td>
<td>-2.874301</td>
<td>3.769789</td>
</tr>
</tbody>
</table>

BTS2a

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.001794</td>
<td>0.117934</td>
<td>-0.123388</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.321461</td>
<td>0.315050</td>
<td>0.890393</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.315271</td>
<td>0.468387</td>
<td>-0.220387</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.121088</td>
<td>-1.034344</td>
<td>-0.279759</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.621037</td>
<td>0.605082</td>
<td>-0.865622</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.691605</td>
<td>0.441651</td>
<td>-1.573390</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.129623</td>
<td>-0.420760</td>
<td>-1.637352</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.485651</td>
<td>-2.185541</td>
<td>-1.523058</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.649470</td>
<td>-2.472799</td>
<td>-1.147653</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.172185</td>
<td>-2.500762</td>
<td>-0.948461</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-0.179701</td>
<td>-2.453395</td>
<td>-0.576002</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.769553</td>
<td>-2.390385</td>
<td>-1.329182</td>
<td></td>
</tr>
</tbody>
</table>

BCP4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.137428</td>
<td>1.301458</td>
<td>0.682360</td>
</tr>
<tr>
<td>H</td>
<td>-1.538591</td>
<td>1.471830</td>
<td>1.663704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>O</td>
<td>0.198287</td>
<td>1.210374</td>
<td>0.700638</td>
</tr>
<tr>
<td>H</td>
<td>-1.398473</td>
<td>-0.930424</td>
<td>0.450958</td>
</tr>
<tr>
<td>H</td>
<td>-1.584293</td>
<td>1.727254</td>
<td>-0.195552</td>
</tr>
<tr>
<td>O</td>
<td>0.703013</td>
<td>1.253981</td>
<td>-0.609506</td>
</tr>
<tr>
<td>H</td>
<td>1.034854</td>
<td>0.346544</td>
<td>-0.720024</td>
</tr>
<tr>
<td>O</td>
<td>1.338978</td>
<td>-1.383070</td>
<td>-0.793350</td>
</tr>
<tr>
<td>H</td>
<td>0.518084</td>
<td>-1.735521</td>
<td>-0.434553</td>
</tr>
<tr>
<td>H</td>
<td>2.046632</td>
<td>-1.744655</td>
<td>-0.274367</td>
</tr>
<tr>
<td>O</td>
<td>-1.183151</td>
<td>-1.848061</td>
<td>-0.359175</td>
</tr>
<tr>
<td>H</td>
<td>-0.526371</td>
<td>-0.967017</td>
<td>-0.525879</td>
</tr>
<tr>
<td>H</td>
<td>-0.559487</td>
<td>0.813092</td>
<td>-0.525879</td>
</tr>
<tr>
<td>O</td>
<td>1.448293</td>
<td>0.246317</td>
<td>-1.737407</td>
</tr>
<tr>
<td>H</td>
<td>1.490566</td>
<td>-0.653853</td>
<td>-2.094491</td>
</tr>
<tr>
<td>O</td>
<td>1.172872</td>
<td>-2.377827</td>
<td>-2.493753</td>
</tr>
<tr>
<td>H</td>
<td>0.416979</td>
<td>-2.560926</td>
<td>-1.930976</td>
</tr>
<tr>
<td>H</td>
<td>1.814522</td>
<td>-3.057981</td>
<td>-2.332323</td>
</tr>
<tr>
<td>O</td>
<td>-1.049332</td>
<td>-2.285060</td>
<td>-0.716118</td>
</tr>
<tr>
<td>H</td>
<td>-1.014666</td>
<td>-2.647361</td>
<td>0.170348</td>
</tr>
</tbody>
</table>

BTS2b

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.010268</td>
<td>0.021112</td>
<td>-0.032583</td>
</tr>
<tr>
<td>H</td>
<td>-0.083324</td>
<td>0.066081</td>
<td>1.045140</td>
</tr>
<tr>
<td>O</td>
<td>1.316712</td>
<td>0.010849</td>
<td>-0.359175</td>
</tr>
<tr>
<td>H</td>
<td>-0.526371</td>
<td>-0.967017</td>
<td>-0.380837</td>
</tr>
<tr>
<td>H</td>
<td>-0.559487</td>
<td>0.813092</td>
<td>-0.525879</td>
</tr>
<tr>
<td>O</td>
<td>1.448293</td>
<td>0.246317</td>
<td>-1.737407</td>
</tr>
<tr>
<td>H</td>
<td>1.490566</td>
<td>-0.653853</td>
<td>-2.094491</td>
</tr>
<tr>
<td>O</td>
<td>1.172872</td>
<td>-2.377827</td>
<td>-2.493753</td>
</tr>
<tr>
<td>H</td>
<td>0.416979</td>
<td>-2.560926</td>
<td>-1.930976</td>
</tr>
<tr>
<td>H</td>
<td>1.814522</td>
<td>-3.057981</td>
<td>-2.332323</td>
</tr>
<tr>
<td>O</td>
<td>-1.049332</td>
<td>-2.285060</td>
<td>-0.716118</td>
</tr>
<tr>
<td>H</td>
<td>-1.014666</td>
<td>-2.647361</td>
<td>0.170348</td>
</tr>
</tbody>
</table>

BCP5

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.474370</td>
<td>1.323020</td>
<td>1.184023</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>-0.503966</td>
<td>1.386955</td>
<td>2.255585</td>
</tr>
<tr>
<td>O</td>
<td>0.736800</td>
<td>0.963726</td>
<td>0.740292</td>
</tr>
<tr>
<td>H</td>
<td>-1.464501</td>
<td>-0.655364</td>
<td>0.711395</td>
</tr>
<tr>
<td>H</td>
<td>-1.045305</td>
<td>1.983890</td>
<td>0.560313</td>
</tr>
<tr>
<td>O</td>
<td>0.821105</td>
<td>1.162757</td>
<td>-0.647387</td>
</tr>
<tr>
<td>H</td>
<td>0.822196</td>
<td>0.248512</td>
<td>-0.978560</td>
</tr>
<tr>
<td>O</td>
<td>0.587505</td>
<td>-1.441999</td>
<td>-1.400925</td>
</tr>
<tr>
<td>H</td>
<td>-0.169002</td>
<td>-1.692838</td>
<td>-0.862861</td>
</tr>
<tr>
<td>H</td>
<td>1.284531</td>
<td>-2.055135</td>
<td>-1.203832</td>
</tr>
<tr>
<td>O</td>
<td>-1.610264</td>
<td>-1.510765</td>
<td>0.303311</td>
</tr>
<tr>
<td>H</td>
<td>-1.987449</td>
<td>-2.073536</td>
<td>0.967968</td>
</tr>
</tbody>
</table>

BTS2c

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.018912</td>
<td>0.068258</td>
<td>-0.020975</td>
</tr>
<tr>
<td>O</td>
<td>-0.005999</td>
<td>0.063703</td>
<td>1.345637</td>
</tr>
<tr>
<td>H</td>
<td>0.973196</td>
<td>0.117570</td>
<td>-0.452055</td>
</tr>
<tr>
<td>H</td>
<td>-0.656479</td>
<td>0.880924</td>
<td>-0.339995</td>
</tr>
<tr>
<td>H</td>
<td>-0.478350</td>
<td>-0.921526</td>
<td>-0.432866</td>
</tr>
<tr>
<td>O</td>
<td>1.021722</td>
<td>-0.783787</td>
<td>1.789538</td>
</tr>
<tr>
<td>H</td>
<td>0.552103</td>
<td>-1.619143</td>
<td>1.930732</td>
</tr>
<tr>
<td>O</td>
<td>-1.197747</td>
<td>-2.126049</td>
<td>-0.843746</td>
</tr>
<tr>
<td>H</td>
<td>-2.068748</td>
<td>-1.726724</td>
<td>-0.873276</td>
</tr>
<tr>
<td>O</td>
<td>-0.484018</td>
<td>-3.098256</td>
<td>1.723670</td>
</tr>
<tr>
<td>H</td>
<td>-0.794842</td>
<td>-2.958904</td>
<td>0.825657</td>
</tr>
<tr>
<td>H</td>
<td>-0.124230</td>
<td>-3.975631</td>
<td>1.762279</td>
</tr>
</tbody>
</table>

BCP6
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.349680</td>
<td>1.627713</td>
<td>-0.758408</td>
</tr>
<tr>
<td>O</td>
<td>0.112818</td>
<td>1.323927</td>
<td>0.523995</td>
</tr>
<tr>
<td>H</td>
<td>1.352952</td>
<td>1.493250</td>
<td>-1.114576</td>
</tr>
<tr>
<td>H</td>
<td>-0.268378</td>
<td>2.438062</td>
<td>-1.097115</td>
</tr>
<tr>
<td>H</td>
<td>-0.734370</td>
<td>-0.179710</td>
<td>-1.589640</td>
</tr>
<tr>
<td>O</td>
<td>1.119314</td>
<td>0.477346</td>
<td>1.015051</td>
</tr>
<tr>
<td>H</td>
<td>0.652058</td>
<td>-0.372232</td>
<td>1.079600</td>
</tr>
<tr>
<td>O</td>
<td>-1.155156</td>
<td>-1.041024</td>
<td>-1.626770</td>
</tr>
<tr>
<td>H</td>
<td>-2.070591</td>
<td>-0.883046</td>
<td>-1.824988</td>
</tr>
<tr>
<td>O</td>
<td>-0.294195</td>
<td>-1.857092</td>
<td>0.884864</td>
</tr>
<tr>
<td>H</td>
<td>-0.677197</td>
<td>-1.749950</td>
<td>0.008035</td>
</tr>
<tr>
<td>H</td>
<td>0.127595</td>
<td>-2.706942</td>
<td>0.903277</td>
</tr>
</tbody>
</table>

BTS2d

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.198504</td>
<td>-0.161341</td>
<td>-0.697593</td>
</tr>
<tr>
<td>O</td>
<td>0.058982</td>
<td>-1.504379</td>
<td>-0.491374</td>
</tr>
<tr>
<td>O</td>
<td>1.333486</td>
<td>-2.072626</td>
<td>-0.334231</td>
</tr>
<tr>
<td>H</td>
<td>1.393962</td>
<td>-2.154343</td>
<td>0.628287</td>
</tr>
<tr>
<td>H</td>
<td>-0.769091</td>
<td>0.229439</td>
<td>-0.979910</td>
</tr>
<tr>
<td>H</td>
<td>0.482112</td>
<td>0.371814</td>
<td>0.302345</td>
</tr>
<tr>
<td>H</td>
<td>0.975599</td>
<td>0.074766</td>
<td>-1.413580</td>
</tr>
<tr>
<td>O</td>
<td>0.959018</td>
<td>0.970207</td>
<td>1.539708</td>
</tr>
<tr>
<td>H</td>
<td>1.764181</td>
<td>1.342370</td>
<td>1.176446</td>
</tr>
<tr>
<td>O</td>
<td>1.294718</td>
<td>-1.727862</td>
<td>2.392237</td>
</tr>
<tr>
<td>H</td>
<td>1.865055</td>
<td>-1.919127</td>
<td>3.125293</td>
</tr>
<tr>
<td>H</td>
<td>1.204246</td>
<td>-0.774129</td>
<td>2.333505</td>
</tr>
</tbody>
</table>
BCP7
C -0.595868 0.612317 -1.638224
O -0.853496 -0.536108 -1.000526
O 0.329865 -1.274683 -0.839295
H 0.455000 -1.233743 0.123037
H -1.497566 1.103294 -1.952630
H -0.110566 1.700663 0.279761
H 0.305883 0.655571 -2.218591
O 0.128793 1.864898 1.193856
H 0.684509 2.634496 1.194090
O 0.590646 -0.806937 1.833988
H 1.323810 -1.026311 2.394256
H 0.505699 0.150975 1.829983