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Absorption and fluorescence spectra of PMAMI in THF, DCM, and PhCN

S1. Normalized absorption and fluorescence of PMAMI in DCM
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S2. Normalized absorption and fluorescence of PMAMI in PhCN
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S3. Normalized absorption and fluorescence of PMAMI in THF
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Absorption spectra of ZnPc in THF, DCM, and PhCN

S4. Normalized absorption of ZnPc in DCM
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S5. Normalized absorption of ZnPc in PhCN
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S6

. Normalized absorption of ZnPc in THF
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Absorption spectra of ZnPc-PDI in THF, DCM, and PhCN

S7

S8.

. Normalized absorption of PDI-ZnPc in PhCN
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S9. Normalized absorption of PDI-ZnPc in THF
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Concentration dependent absorption spectra of PMAMI, ZnPc, and ZnPc-PDI in toluene, DCM,
THF, and PhCN

Absorption spectra of all species were recorded with various concentrations of each species in a
1 mm cuvette, such that the optical density associated with those species spanned a range that
includes the optical density of the transient absorption measurements. Little-to-no
concentration dependence of the spectra were observed in all samples.

S10. Concentration dependence of PMAMI, ZnPc, and ZnPc-PDl in toluene at various
concentrations in a 1 mm cuvette.
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S11. Concentration dependence of PMAMI, ZnPc, and ZnPc-PDI in DCM at various
concentrations in a 1 mm cuvette.
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S12. Concentration dependence of PMAMI, ZnPc, and ZnPc-PDI in THF at various concentrations
in a Imm cuvette.
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S13. Concentration dependence of PMAMI, ZnPc, and ZnPc-PDI in PhCN at various
concentrations in a 1Imm cuvette.
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Power-dependent transient absorption spectra of PMAMI, ZnPc, and ZnPc-PDI in toluene

Power-dependent transient absorption spectra of all species at 540 nm for PMAMI and ZnPc-
PDI as well as at 685 nm for ZnPc and ZnPc-PDl in toluene are reported such that the
experimental pump power spanned the 125 uW pump power reported in the manuscript. In all
cases, there was no power dependence of the observed kinetics at 743 nm.

S14. Power dependent trace at 743 nm of PMAMI in toluene pumped at 540 nm
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S15. Power dependent trace at 743 nm of ZnPc in toluene pumped at 685nm
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S16. Power dependent trace at 743 nm of ZnPc-PDl in toluene pumped at 540 nm
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S17. Power dependent trace at 743 nm of ZnPc-PDI in toluene pumped at 685 nm
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Raman excitation of low frequency DCM vibrational modes in ZnPc

S18. Solvent dependent oscillations are present in ZnPc in DCM but not in toluene, owing to
the oscillations’ origin in off-resonant Raman excitation of low frequency DCM vibrational
modes.
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S19. Pump-probe trace at 687 nm upon 540 nm photoexcitation of PDI-ZnPc
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S20. Pump-probe trace at 480 nm upon 540 nm photoexcitation of PDI-ZnPc
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S21. Pump-probe trace at 740 nm upon 540 nm photoexcitation of PDI-ZnPc
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Modelling of orientation factor k for energy transfer

The general equation for the orientation factor in three dimensions is:
K =21D '2‘,4 - 3(2‘[) ’ P)(Z‘A ‘R)

Where HD and #4 are unit vectors describing the transition dipole moment orientation of the
donor and acceptor chromophores, respectively and R is the unit vector describing the
direction from the center of the donor chromophore to the acceptor chromophore. By
approximating that the transition dipole moments of the PDI and ZnPc moieties are coplanar,
the dot products in the above equation can be replaced by cosine functions:

Kk = cos (8,) — 3(cosOpg)(cos 0,4z)

Where HDA, o

to parametrize Opr and O4r in terms of QDA, we model our system such that each molecular
moiety is rigidly connected to a central pivot point on the molecular bridge according to the
following picture:

DR and O4r are the in plane angles between their respective unit vectors. In order

S22. Schematic of orientation factor modeling for PDI-ZnPc arrangement of transition dipole
moments

Where if we assume the moieties are rigidly connected to the pivot point and with equal
length, we retrieve the relation:

Opar = 20pg = 20 45

Plugging into the equation for K:

0 0
Kk, =cos (6p,) - 3(COS(%) )(cos (%))

10



We can write the orientation factor for the orthogonal transition dipole moment using the
relation that:

T
Opaz= >t Opa1
Such that:

Opa Opa
Kk, =sin (6p,) - 3(COS(% )(sin (%))

T

. KZ + Kz 2 o
Plotting ™1 2 for an expected range of values from 0 to 4 gives:

2 2
S13. Plot of 1 L using a model considering one donor transition dipole moment and one

acceptor transition dipole moment with variable relative angle Opa
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S23. Global analysis! after photoexcitation of PDI-ZnPc in DCM at 685 nm model with 5
evolution-associated decay spectra (EADS)
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S24. Residual for above model at 687 nm
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S25. Table of EADS with associated rate constants for above model

Spectrum Decay rate (ps™)

EADS1 2.07036 (0.007012)
EADS2 0.467947 (0.0007183)
EADS3 0.104808 (0.001707)
EADS4 0.0212738 (0.0001412)
EADS5 0.00273362 (5.833e-05)

S26. Global analysis after photoexcitation of PDI-ZnPc in toluene at 685 nm model with 5

EADS
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S27. Residual for above model at 687 nm
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S28. Table of EADS with associated rate constant for above model

Spectrum Decay rate (ps™)

EADS1 2.81437 (0.03756)
EADS2 0.402694 (0.004658)
EADS3 0.0974395 (0.002073)
EADS4 0.0169855 (0.0001571)
EADS5 0.000763885 (3.814e-06)

S29. Global analysis after photoexcitation of PDI-ZnPc in THF at 685 nm model with 5 EADS
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S30. Residual for above model at 687 nm
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S31. Table of EADS with associated rate constant for above model

Spectrum Decay rate (ps?)

EADS1 2.52500 (0.004709)
EADS2 0.182995 (0.007895)
EADS3 0.180985 (0.008134)
EADS4 0.00219742 (2.612e-05)
EADS5 0.000763885 (3.814e-06)

S32. Global analysis after photoexcitation of PDI-ZnPc in PhCN at 685 nm model with 5 EADS
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S33. Residual for above model at 687 nm
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S34. Table of EADS with associated rate constant for above model

Spectrum Decay rate (ps™?)

EADS1 2.89022 (0.04410)
EADS2 0.232876 (0.009753)
EADS3 0.614688 (0.009506)
EADS4 0.0154456 (8.998e-05)
EADS5 0.00301086 (0.0002217)

S35. Residual at 687 nm for the 6 EADS model applied to photoexcitation of PDI-ZnPc in DCM at
685 nm
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S36. Residual at 687 nm for the 6 EADS model applied to photoexcitation of PDI-ZnPc in toluene
at 685 nm
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S37. Global analysis after photoexcitation of PDI-ZnPc in THF at 685 nm model with 6 EADS
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S38. Residual for above model at 687 nm
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S39. Global analysis after photoexcitation of PDI-ZnPc in PhCN at 685 nm model with 6 EADS
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S40. Residual for above model at 687 nm
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S41. Rehm-Weller Calculations:

The Rehm-Weller equation® allows calculation of AG¢s in any solvent from the reduction and
oxidation potentials retrieved from cyclic voltammetry (E,.q and E,, respectively) and dielectric

constant (Eref) in one solvent (in this case, THF), with the knowledge of the ionic radii of the

molecular moieties (rpand r,), the relative dielectric constants of the solvents (‘SS), the distance
between the respective ions (rpa), and the absorption energy of the electron transfer donor

(Eoo):

AGog(eV) = E,, ~ E oy~ E e +ezf1+1)(1 )
el) = - - - g
cs ox “red 00 AT ) 4EE0 47T€0\27'D 21, Eref &s

For these calculations, both ionic radii and inter-ion distance were estimated to be 0.5 and 1.5
nm, respectively. Values of the relative dielectric constant for THF, DCM, PhCN, and toluene are

7.58, 8.93, 26.0, and 2.38, respectively. Values of AGg were calculated by removing the Eqg
term from the above equation.

S42. Reorganization energy calculations

The reorganization energy can be expressed in the Marcus representation? according to:

e 1 1

eV (—+—-—)(=-—
solvent( ) 47T£0\2TD ZTA rDA)(n S)

Where nis the refractive index of the solvent and n? is an estimate for the optical dielectric
constant. Values of index of refraction for THF, DCM, PHCN, and toluene are 1.41, 1.42, 1.53,
and 1.50, respectively.
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