Room temperature sintering of polar ZnO nanosheets: II-Mechanism

Amparo Fernández-Pérez, Verónica Rodríguez-Casado, Teresa Valdés-Solís and Gregorio Marbán*

Instituto Nacional del Carbón (INCAR-CSIC) – c/Francisco Pintado Fe 26, 33011-Oviedo (Spain).
Tel. +34 985119090; Fax +34 985297662

Supplementary Information

* Corresponding author: greca@incar.csic.es
FTIR spectra for ZnO-P

![FTIR spectra](image)

Figure S1. Deconvolution of FTIR spectra for ZnO-P after 0 days of unprotected storage
Figure S2. Deconvolution of FTIR spectra for ZnO-P after 2 days of unprotected storage
Figure S3. Deconvolution of FTIR spectra for ZnO-P after 6 days of unprotected storage
Figure S4. Deconvolution of FTIR spectra for ZnO-P after 8 days of unprotected storage
Figure S5. Variation of parameter P (equation (1)) with storage time for the ZnO-P sample previously subjected to unprotected storage (type and position of the FTIR features inside the plots. Band assignments in Figure S5)
Figure S6. Deconvolution of Raman spectra for ZnO-M after 0, 2, 6, 8, 10 and 30 days of unprotected storage
Figure S7. Deconvolution of Raman spectra for ZnO-P after 0, 2, 6, 8, 10 and 30 days of unprotected storage.
XPS spectra for ZnO-M and ZnO-P

Figure S8. Deconvolution of XPS spectra (Mg-Kα source) for ZnO-M (evolution with unprotected storage time)
Figure S9. Deconvolution of XPS spectra (Al-Kα source) for ZnO-M (evolution with unprotected storage time)
Figure S10. Deconvolution of XPS spectra (Mg-Kα source) for ZnO-P (evolution with unprotected storage time)
Figure S11. Deconvolution of XPS spectra (Al-Kα source) for ZnO-P (evolution with unprotected storage time)
Figure S12. Variation of (Zn2p3/2-II)-(Zn2p3/2-I) binding energy difference with the relative amount of Zn(OH)$_2$