SUPPORTING INFORMATION

CO adsorption, oxidation and carbonate formation mechanisms on Fe3O4 surfaces

Xiaohu Yu, Xuemei Zhang, Lingxia Jin and Gang Feng

(a) Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China; (b) State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China; (c) College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China. E-mail address: yuxiaohu950203@126.com
Figure S1. Configurations of least stable CO adsorption and oxidation on Fe$_{tet1}$ termination

(a) -0.41 (b) 1.11 (c) 0.40 (d) -0.19
(e) 0.01

Figure S2. Configurations of least stable CO adsorption and oxidation on Fe$_{oct2}$ termination

(a) -1.54 (b) -0.57 (c) -0.56 (d) -0.38
(h) -1.94 (i) -1.26 (k) -0.98 (n) -2.04
(o) -1.83
Figure S3. Configurations of least stable CO adsorption, oxidation and carbonate on Fe$_3$O$_4$(110) A layer.

Figure S4. Configurations of least stable CO adsorption and oxidation on Fe$_3$O$_4$(110) B layer.
Figure S5. Configurations of least stable CO adsorption, oxidation and carbonate on on Fe₃O₄(001) B termination.