High coverage water adsorption on the CuO(011) surface

Xiaohu Yu* and Xuemei Zhang

a) Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, P.R. China.

Corresponding authors:

Xiaohu Yu Tel: +86 18739700918; Email: yuxiaohu950203@126.com
Fig. S1 Least stable configurations of the one H$_2$O adsorption on the CuO(011) surface (Cu atoms in blue ball, O atom in red ball, O and H atoms of adsorbed water in small red ball and white ball. Adsorption energies in eV).
Fig. S2 Least stable configurations of the two H$_2$O adsorption on the CuO(011) surface (Cu atoms in blue ball, O atom in red ball, O and H atom of water in small red ball and white ball. Adsorption energies in eV).
Fig. S3 Least stable configurations of the three \(\text{H}_2\text{O} \) adsorption on the \(\text{CuO}(011) \) surface (Cu atoms in blue ball, O atom in red ball, O and H atom of water in small red ball and white ball. Adsorption energies in eV).

(a) -2.89 eV
(b) -2.78 eV
(c) -2.73 eV
Fig. S4 Least stable configurations of the four H$_2$O adsorption on the CuO(011) surface (Cu atoms in blue ball, O atom in red ball, O and H atom of water in small red ball and white ball. Adsorption energies in eV).