Photoexcitation dynamics of p-nitroaniline and N,N-dimethyl-p-nitroaniline in 1-alkyl-3-methylimidazolium-cation based ionic liquids with different alkyl chain lengths

Yoshifumi Kimura*, Shinya Ibaraki, Ryusei Hirano, Yosuke Sugita, Yoshiro Yasaka, Masakatsu Ueno

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan

Corresponding Author
Y. Kimura

Email: yokimura@mail.doshisha.ac.jp

Tel: +81-774-65-6561

FAX: +81-774-65-6801
Table S1. Relative amplitudes and time constants obtained by the coevolution fit of the transient absorption profiles of pNA at different probe wavelengths to the multi-exponential function. The value of τ_3 is fixed to be 1000 ps. The errors are estimated from the residual of the fit and correlations of error matrix for each transient.

365 nm

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$mim$^+$</td>
<td>-1 ± 0.04</td>
<td>-1.01 ± 0.03</td>
<td>-0.11 ± 0.01</td>
<td>1.5 ± 0.1</td>
<td>7.4 ± 0.2</td>
</tr>
<tr>
<td>C$_4$mim$^+$</td>
<td>-1 ± 0.06</td>
<td>-0.97 ± 0.04</td>
<td>-0.11 ± 0.01</td>
<td>1.7 ± 0.1</td>
<td>8.0 ± 0.3</td>
</tr>
<tr>
<td>C$_6$mim$^+$</td>
<td>-1 ± 0.04</td>
<td>-1.19 ± 0.04</td>
<td>-0.17 ± 0.01</td>
<td>1.5 ± 0.1</td>
<td>7.9 ± 0.3</td>
</tr>
<tr>
<td>C$_8$mim$^+$</td>
<td>-1 ± 0.05</td>
<td>-1.00 ± 0.05</td>
<td>-0.15 ± 0.01</td>
<td>2.0 ± 0.1</td>
<td>8.1 ± 0.3</td>
</tr>
<tr>
<td>C$_{10}$mim$^+$</td>
<td>-1 ± 0.03</td>
<td>-1.41 ± 0.03</td>
<td>-0.20 ± 0.01</td>
<td>1.6 ± 0.1</td>
<td>7.5 ± 0.2</td>
</tr>
<tr>
<td>C$_{12}$mim$^+$</td>
<td>-1 ± 0.09</td>
<td>-1.45 ± 0.07</td>
<td>-0.22 ± 0.01</td>
<td>1.6 ± 0.2</td>
<td>7.5 ± 0.4</td>
</tr>
</tbody>
</table>

380 nm

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$mim$^+$</td>
<td>-1 ± 0.04</td>
<td>-0.51 ± 0.04</td>
<td>-0.017 ± 0.005</td>
<td>1.7 ± 0.1</td>
<td>8.6 ± 0.7</td>
</tr>
<tr>
<td>C$_4$mim$^+$</td>
<td>-1 ± 0.04</td>
<td>-0.56 ± 0.04</td>
<td>-0.027 ± 0.005</td>
<td>1.7 ± 0.1</td>
<td>8.5 ± 0.6</td>
</tr>
<tr>
<td>C$_6$mim$^+$</td>
<td>-1 ± 0.05</td>
<td>-0.62 ± 0.05</td>
<td>-0.038 ± 0.005</td>
<td>1.9 ± 0.1</td>
<td>8.4 ± 0.7</td>
</tr>
<tr>
<td>C$_8$mim$^+$</td>
<td>-1 ± 0.05</td>
<td>-0.62 ± 0.05</td>
<td>-0.045 ± 0.005</td>
<td>1.9 ± 0.1</td>
<td>8.3 ± 0.6</td>
</tr>
<tr>
<td>C$_{10}$mim$^+$</td>
<td>-1 ± 0.05</td>
<td>-0.65 ± 0.06</td>
<td>-0.059 ± 0.005</td>
<td>2.0 ± 0.1</td>
<td>8.7 ± 0.7</td>
</tr>
<tr>
<td>C$_{12}$mim$^+$</td>
<td>-1 ± 0.05</td>
<td>-0.77 ± 0.06</td>
<td>-0.077 ± 0.005</td>
<td>2.0 ± 0.1</td>
<td>8.7 ± 0.6</td>
</tr>
</tbody>
</table>

420 nm

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.44 ± 0.01</td>
<td>0.051 ± 0.001</td>
<td>0.38 ± 0.01</td>
<td>2.7 ± 0.1</td>
</tr>
<tr>
<td>C$_4$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.41 ± 0.01</td>
<td>0.047 ± 0.001</td>
<td>0.48 ± 0.01</td>
<td>2.8 ± 0.1</td>
</tr>
<tr>
<td>C$_6$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.41 ± 0.01</td>
<td>0.053 ± 0.001</td>
<td>0.41 ± 0.01</td>
<td>3.1 ± 0.1</td>
</tr>
<tr>
<td>C$_8$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.43 ± 0.01</td>
<td>0.046 ± 0.001</td>
<td>0.55 ± 0.01</td>
<td>3.2 ± 0.1</td>
</tr>
<tr>
<td>C$_{10}$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.40 ± 0.01</td>
<td>0.049 ± 0.001</td>
<td>0.46 ± 0.01</td>
<td>3.4 ± 0.1</td>
</tr>
<tr>
<td>C$_{12}$mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.40 ± 0.01</td>
<td>0.041 ± 0.001</td>
<td>0.37 ± 0.02</td>
<td>3.2 ± 0.1</td>
</tr>
<tr>
<td>Cation</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>τ_1</td>
<td>τ_2</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.55 ± 0.01</td>
<td>0.049 ± 0.001</td>
<td>0.55 ± 0.01</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.57 ± 0.01</td>
<td>0.047 ± 0.001</td>
<td>0.57 ± 0.01</td>
<td>4.6 ± 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.56 ± 0.01</td>
<td>0.052 ± 0.001</td>
<td>0.56 ± 0.01</td>
<td>4.9 ± 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.56 ± 0.01</td>
<td>0.054 ± 0.001</td>
<td>0.56 ± 0.01</td>
<td>5.4 ± 0.1</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.52 ± 0.01</td>
<td>0.051 ± 0.001</td>
<td>0.52 ± 0.01</td>
<td>5.1 ± 0.1</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.53 ± 0.01</td>
<td>0.068 ± 0.001</td>
<td>0.53 ± 0.01</td>
<td>5.2 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.40 ± 0.01</td>
<td>0.051 ± 0.001</td>
<td>0.38 ± 0.01</td>
<td>2.7 ± 0.1</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.44 ± 0.01</td>
<td>0.047 ± 0.001</td>
<td>0.48 ± 0.01</td>
<td>2.8 ± 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.39 ± 0.01</td>
<td>0.053 ± 0.001</td>
<td>0.41 ± 0.01</td>
<td>3.1 ± 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.44 ± 0.01</td>
<td>0.046 ± 0.001</td>
<td>0.55 ± 0.01</td>
<td>3.2 ± 0.1</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.37 ± 0.01</td>
<td>0.049 ± 0.001</td>
<td>0.46 ± 0.01</td>
<td>3.4 ± 0.1</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.29 ± 0.01</td>
<td>0.041 ± 0.001</td>
<td>0.36 ± 0.01</td>
<td>3.2 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.41 ± 0.02</td>
<td>0.077 ± 0.001</td>
<td>0.34 ± 0.01</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.45 ± 0.02</td>
<td>0.068 ± 0.001</td>
<td>0.40 ± 0.01</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.41 ± 0.01</td>
<td>0.075 ± 0.001</td>
<td>0.39 ± 0.01</td>
<td>2.2 ± 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.36 ± 0.01</td>
<td>0.078 ± 0.001</td>
<td>0.40 ± 0.01</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.39 ± 0.01</td>
<td>0.082 ± 0.001</td>
<td>0.38 ± 0.01</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.33 ± 0.01</td>
<td>0.067 ± 0.001</td>
<td>0.30 ± 0.01</td>
<td>2.3 ± 0.1</td>
</tr>
</tbody>
</table>
Table S2. Relative amplitudes and time constants obtained by the coevolution fit of the transient absorption profiles of DMpNA at different probe wavelengths to the multi-exponential function. The value of τ_3 is fixed to be 1000 ps. The errors are estimated from the residual of the fit and correlations of error matrix for each transient.

365 nm

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_0</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$mim$^+$</td>
<td>0.39 ± 0.29</td>
<td>-1 ± 0.45</td>
<td>-0.40 ± 0.03</td>
<td>-0.054 ± 0.001</td>
<td>0.68 ± 0.01</td>
<td>3.2 ± 0.1</td>
<td>10.8 ± 0.1</td>
</tr>
<tr>
<td>C$_4$mim$^+$</td>
<td>0.36 ± 0.03</td>
<td>-1 ± 0.04</td>
<td>-0.37 ± 0.04</td>
<td>-0.052 ± 0.002</td>
<td>0.60 ± 0.09</td>
<td>2.8 ± 0.2</td>
<td>9.1 ± 0.9</td>
</tr>
<tr>
<td>C$_6$mim$^+$</td>
<td>0.71 ± 0.38</td>
<td>-1 ± 0.26</td>
<td>-0.80 ± 0.04</td>
<td>-0.089 ± 0.003</td>
<td>1.0 ± 0.3</td>
<td>2.7 ± 0.9</td>
<td>8.4 ± 1.0</td>
</tr>
<tr>
<td>C$_8$mim$^+$</td>
<td>0.91 ± 0.52</td>
<td>-1 ± 0.31</td>
<td>-1.36 ± 0.05</td>
<td>-0.21 ± 0.01</td>
<td>0.93 ± 0.34</td>
<td>2.6 ± 1.5</td>
<td>8.0 ± 1.0</td>
</tr>
<tr>
<td>C$_{10}$mim$^+$</td>
<td>0.92 ± 1.01</td>
<td>-1 ± 0.89</td>
<td>-0.92 ± 0.03</td>
<td>-0.14 ± 0.01</td>
<td>1.1 ± 0.5</td>
<td>2.2 ± 1.2</td>
<td>8.4 ± 0.8</td>
</tr>
<tr>
<td>C$_{12}$mim$^+$</td>
<td>1.1 ± 0.96</td>
<td>-1 ± 0.84</td>
<td>-1.08 ± 0.07</td>
<td>-0.15 ± 0.01</td>
<td>1.1 ± 0.4</td>
<td>2.2 ± 1.1</td>
<td>7.7 ± 0.5</td>
</tr>
</tbody>
</table>

380 nm

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_0</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$mim$^+$</td>
<td>1.54 ± 3.15</td>
<td>-1 ± 0.30</td>
<td>-0.50 ± 0.08</td>
<td>-0.032 ± 0.003</td>
<td>0.27 ± 0.02</td>
<td>1.9 ± 0.2</td>
<td>7.6 ± 0.7</td>
</tr>
<tr>
<td>C$_4$mim$^+$</td>
<td>1.39 ± 3.78</td>
<td>-1 ± 0.32</td>
<td>-0.35 ± 0.05</td>
<td>-0.032 ± 0.002</td>
<td>0.24 ± 0.02</td>
<td>2.1 ± 0.1</td>
<td>8.2 ± 0.6</td>
</tr>
<tr>
<td>C$_6$mim$^+$</td>
<td>1.64 ± 5.84</td>
<td>-1 ± 0.34</td>
<td>-0.59 ± 0.09</td>
<td>-0.061 ± 0.003</td>
<td>0.25 ± 0.18</td>
<td>2.7 ± 0.2</td>
<td>8.5 ± 0.7</td>
</tr>
<tr>
<td>C$_8$mim$^+$</td>
<td>1.78 ± 6.02</td>
<td>-1 ± 0.37</td>
<td>-0.70 ± 0.12</td>
<td>-0.084 ± 0.003</td>
<td>0.29 ± 0.02</td>
<td>2.7 ± 0.2</td>
<td>8.0 ± 0.6</td>
</tr>
<tr>
<td>C$_{10}$mim$^+$</td>
<td>1.81 ± 1.56</td>
<td>-1 ± 0.16</td>
<td>-0.75 ± 0.14</td>
<td>-0.094 ± 0.002</td>
<td>0.28 ± 0.01</td>
<td>3.0 ± 0.3</td>
<td>7.8 ± 0.7</td>
</tr>
<tr>
<td>C$_{12}$mim$^+$</td>
<td>1.77 ± 1.51</td>
<td>-1 ± 0.17</td>
<td>-0.72 ± 0.15</td>
<td>-0.095 ± 0.002</td>
<td>0.27 ± 0.01</td>
<td>3.2 ± 0.3</td>
<td>8.0 ± 0.8</td>
</tr>
<tr>
<td>Cation</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>τ_1</td>
<td>τ_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 \pm 0.02</td>
<td>-0.01 \pm 0.02</td>
<td>-0.011 \pm 0.003</td>
<td>2.3 \pm 0.1</td>
<td>12.7 \pm 3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 \pm 0.02</td>
<td>-0.07 \pm 0.02</td>
<td>-0.011 \pm 0.003</td>
<td>2.7 \pm 0.1</td>
<td>13.3 \pm 4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 \pm 0.03</td>
<td>-0.10 \pm 0.03</td>
<td>-0.010 \pm 0.004</td>
<td>2.8 \pm 0.1</td>
<td>13.2 \pm 3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 \pm 0.06</td>
<td>-0.15 \pm 0.07</td>
<td>-0.009 \pm 0.004</td>
<td>2.7 \pm 0.2</td>
<td>9.9 \pm 3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 \pm 0.04</td>
<td>-0.08 \pm 0.04</td>
<td>-0.019 \pm 0.003</td>
<td>3.1 \pm 0.1</td>
<td>12.0 \pm 5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 \pm 0.03</td>
<td>-0.05 \pm 0.03</td>
<td>-0.019 \pm 0.003</td>
<td>3.3 \pm 0.1</td>
<td>13.3 \pm 7.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 \pm 0.04</td>
<td>0.09 \pm 0.04</td>
<td>0.003 \pm 0.002</td>
<td>1.9 \pm 0.1</td>
<td>5.2 \pm 0.1</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 \pm 0.04</td>
<td>0.12 \pm 0.04</td>
<td>0.007 \pm 0.002</td>
<td>2.1 \pm 0.1</td>
<td>5.6 \pm 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.11 \pm 0.01</td>
<td>0.006 \pm 0.001</td>
<td>2.2 \pm 0.1</td>
<td>6.3 \pm 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.10 \pm 0.01</td>
<td>0.005 \pm 0.001</td>
<td>2.3 \pm 0.1</td>
<td>6.9 \pm 0.2</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.11 \pm 0.01</td>
<td>0.009 \pm 0.001</td>
<td>2.3 \pm 0.1</td>
<td>6.8 \pm 0.2</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.12 \pm 0.01</td>
<td>0.015 \pm 0.001</td>
<td>2.4 \pm 0.1</td>
<td>6.6 \pm 0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 \pm 0.04</td>
<td>0.39 \pm 0.01</td>
<td>0.017 \pm 0.001</td>
<td>1.2 \pm 0.1</td>
<td>7.4 \pm 0.2</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 \pm 0.04</td>
<td>0.38 \pm 0.01</td>
<td>0.024 \pm 0.002</td>
<td>1.2 \pm 0.1</td>
<td>8.2 \pm 0.3</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.40 \pm 0.01</td>
<td>0.031 \pm 0.001</td>
<td>1.3 \pm 0.1</td>
<td>8.1 \pm 0.2</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.40 \pm 0.01</td>
<td>0.035 \pm 0.002</td>
<td>1.4 \pm 0.1</td>
<td>8.3 \pm 0.3</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.39 \pm 0.01</td>
<td>0.038 \pm 0.002</td>
<td>1.3 \pm 0.1</td>
<td>8.7 \pm 0.4</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 \pm 0.02</td>
<td>0.40 \pm 0.02</td>
<td>0.044 \pm 0.003</td>
<td>1.3 \pm 0.1</td>
<td>8.8 \pm 0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.42 \pm 0.01</td>
<td>0.015 \pm 0.001</td>
<td>0.78 \pm 0.01</td>
<td>5.2 \pm 0.1</td>
</tr>
<tr>
<td>C$_4$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.43 \pm 0.01</td>
<td>0.023 \pm 0.001</td>
<td>0.84 \pm 0.01</td>
<td>5.6 \pm 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.40 \pm 0.01</td>
<td>0.031 \pm 0.001</td>
<td>0.85 \pm 0.01</td>
<td>6.3 \pm 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.43 \pm 0.04</td>
<td>0.022 \pm 0.001</td>
<td>1.17 \pm 0.03</td>
<td>6.9 \pm 0.2</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.38 \pm 0.01</td>
<td>0.039 \pm 0.001</td>
<td>0.92 \pm 0.02</td>
<td>6.8 \pm 0.2</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 \pm 0.01</td>
<td>0.37 \pm 0.01</td>
<td>0.044 \pm 0.001</td>
<td>0.96 \pm 0.02</td>
<td>6.6 \pm 0.2</td>
</tr>
<tr>
<td>Cation</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>τ_1</td>
<td>τ_2</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>C$_2$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.38 ± 0.02</td>
<td>0.015 ± 0.001</td>
<td>0.70 ± 0.01</td>
<td>3.9 ± 0.1</td>
</tr>
<tr>
<td>C$_3$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.38 ± 0.02</td>
<td>0.022 ± 0.001</td>
<td>0.77 ± 0.01</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td>C$_6$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.34 ± 0.03</td>
<td>0.025 ± 0.001</td>
<td>0.76 ± 0.01</td>
<td>4.7 ± 0.1</td>
</tr>
<tr>
<td>C$_8$ mim$^+$</td>
<td>-1 ± 0.04</td>
<td>0.43 ± 0.03</td>
<td>0.029 ± 0.002</td>
<td>1.03 ± 0.05</td>
<td>4.4 ± 0.3</td>
</tr>
<tr>
<td>C$_{10}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.32 ± 0.03</td>
<td>0.033 ± 0.006</td>
<td>0.81 ± 0.01</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>C$_{12}$ mim$^+$</td>
<td>-1 ± 0.01</td>
<td>0.30 ± 0.05</td>
<td>0.045 ± 0.001</td>
<td>0.79 ± 0.01</td>
<td>4.7 ± 0.1</td>
</tr>
</tbody>
</table>
Table S3. Absorption maximum wavelength, the reaction free energy (ΔG) and the solvent reorganization energy (λ_S) estimated from the absorption spectrum using eq. (3), and the ratio of the calculated back-ET rate from eq. (4) for DMpNA in different ILs.

<table>
<thead>
<tr>
<th>Cation</th>
<th>λ_{max}</th>
<th>ΔG / cm$^{-1}$</th>
<th>λ_S / cm$^{-1}$</th>
<th>$k_{\text{et}}([\text{C}_2\text{mim}][\text{NTf}2])/k{\text{et}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2mim^+</td>
<td>402.1</td>
<td>20990</td>
<td>3260</td>
<td>1.00</td>
</tr>
<tr>
<td>C_4mim^+</td>
<td>400.9</td>
<td>21120</td>
<td>3230</td>
<td>1.29</td>
</tr>
<tr>
<td>C_6mim^+</td>
<td>400.9</td>
<td>21240</td>
<td>3100</td>
<td>2.02</td>
</tr>
<tr>
<td>C_8mim^+</td>
<td>400.4</td>
<td>21320</td>
<td>3060</td>
<td>2.47</td>
</tr>
<tr>
<td>$\text{C}_{10}\text{mim}^+$</td>
<td>399.8</td>
<td>21400</td>
<td>3020</td>
<td>3.04</td>
</tr>
<tr>
<td>$\text{C}_{12}\text{mim}^+$</td>
<td>399.1</td>
<td>21430</td>
<td>3030</td>
<td>3.11</td>
</tr>
</tbody>
</table>
Figure S1 Time profiles of the transient absorption (ΔOD) of pNA at different probe wavelengths in (a) [C$_4$mim][NTf$_2$], (b) [C$_6$mim][NTf$_2$], (c) [C$_8$mim][NTf$_2$], (d) [C$_{10}$mim][NTf$_2$], and (e) [C$_{12}$mim][NTf$_2$]. The dashed lines indicate ΔOD = 0. The black lines are the results of fitting by a multi-exponential function.
Figure S2. Time profiles of the transient absorption (ΔOD) of DMpNA at different probe wavelengths in (a) $[\text{C}_4\text{mim}][\text{NTf}_2]$, (b) $[\text{C}_6\text{mim}][\text{NTf}_2]$, (c) $[\text{C}_8\text{mim}][\text{NTf}_2]$, (d) $[\text{C}_{10}\text{mim}][\text{NTf}_2]$, and (e) $[\text{C}_{12}\text{mim}][\text{NTf}_2]$. The dashed lines indicate ΔOD = 0. The black lines are the results of fitting by a multi-exponential function.
Figure S3. Example of the spectral simulation by eq.(3) for DMpNA in [C_{12}mim][NTf_2]. The black solid curve is the experimental absorption spectrum and the red curve is the calculated one.