Supplementary Information

Spectroscopic Imaging Studies of Nanoscale Polarity and Mass Transport Phenomena in Self-Assembled Organic Nanotubes

Hao Xu,† Shinobu Nagasaka,† Naohiro Kameta,‡ Mitsutoshi Masuda,§ Takashi Ito†,* and Daniel A. Higgins†,*

†Department of Chemistry, Kansas State University, Manhattan, KS 66506-0401, USA.
‡Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
§Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Additional details on the measurements of the NR-OH pKₐ are provided, along with representative nanotube video data.

*Corresponding author emails: ito@ksu.edu and higgins@ksu.edu
Determination of pK_a of NR-OH dye

A pH titration experiment was conducted to determine the pK_a of the phenolic proton on the NR-OH dye. The pK_a of the protonated amine groups on the nanotube inner surface was previously reported to be 7.27 in aqueous solution.1 To directly compare with this pK_a, the present titration was performed in water as well. During the titration, small aliquots of 0.2 wt% NaOH aqueous solution were added to the NR-OH dye solution continuously. The pH was measured using a pH meter after each addition of NaOH. The NR-OH absorption spectra were recorded on a UV-vis spectrometer during the titration.

As a solvatochromic dye, the absorption peak of NR-OH shifts as the polarity of the environment changes. It has been reported earlier that the absorption peak of NR-OH shifted upon the addition of 9.9 mM tetrabutylammonium hydroxide (Bu\textsubscript{4}NOH) in methanol.2 The peak shift was assigned to the deprotonation of the phenolic OH group on NR-OH in the presence of base. Thus, in this experiment, we determined the pK_a of NR-OH by plotting the peak absorption wavelength as a function of pH. Figure S1 shows the absorption peak shift upon the addition of base. The pK_a of the phenolic proton was determined to be 9.21 from these data. The relatively large pK_a of the phenolic proton on NR-OH suggests that it will not be deprotonated by interaction with the amine groups on the tube inner surface.

![Figure S1](image_url)

\textbf{Figure S1} The NR-OH absorption peak shift as a function of solution pH.
Video S1. Fluorescence video (20000 frames, 149 frames/s) depicting imaging-FCS measurement on one nanotube. Clear photobleaching in the long time range can be observed in the video. The data shown in Figure 6 were derived from this video.

REFERENCES
