Supporting Information

Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain

Akira Takakado, Yusuke Nakasone and Masahide Terazima

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

SI-1 Yield of photoinduced dimerization of EL222

In the main text, we concluded that the weak diffusion signal of EL222 is due to lower efficiency of the photoinduced dimerization in the adduct state. Therefore, two adduct species must exist in solution: reactive and nonreactive. We analyzed the TG signals of EL222 using eq. (SI-1):

$$I_{\text{TG}}(t) = \alpha \left\{ g_1 \delta n_{\text{reactive}}^{\text{spec}}(t) + g_2 \delta n_{\text{nonreactive}}^{\text{spec}}(t) \right\}^2 \quad \text{(SI-1)}$$

where g_1 and g_2 are the fractions of the reactive and the nonreactive conformations, respectively ($g_1 + g_2 = 1$). The dimerization reaction of the reactive species is expressed by the scheme

$$R \xrightarrow{h\nu} I \xrightarrow{k} P$$

and the temporal dependence is given by eq. (3). On the other hand, the photoexcitation of nonreactive species yields only the adduct species and no further reaction takes place. Under these conditions, the TG signal is written as:

$$I_{\text{TG}}(t) = \alpha \left[g_1 \left(-D_{R1} q^2 \delta n_{R1}^{\text{spec}}(t) + \left(\delta n_{I1} - \frac{k}{(D_{I1} - D_{P1})q^2 + k} \delta n_{P1} \right) \exp\left\{ -D_{R1} q^2 t \right\} \right) \right]^2$$

where $D_{R1}, D_{I1}, D_{P1}, D_{R2}, D_{P2}$ and k are the D of the reactive conformation in the dark state, D of an intermediate during the reaction of the reactive conformation, D of the reaction product of the reactive conformation, D of the nonreactive conformation in the dark state, D of the product of the nonreactive conformation (i.e., adduct species) and the rate constant of the dimerization, respectively. We assumed that the refractive index change and the diffusion coefficient of two conformations in the dark are the same.
\[\delta n_{R1} = \delta n_{R2} \quad \text{and} \quad D_{R1} = D_{R2} \], and that \(D \) of the adduct species is the same as the reactant, \(D_{R2} = D_{P2} \), while it shows that the refractive index change is the same as the reactive conformation \(\delta n_{I1} = \delta n_{P2} \). Therefore, eq. (SI-2) is simplified to:

\[
I_{TG}(t) = \alpha'\left\{-\delta n'_R \exp\left(-D_{R1}q^2 t\right) + \left(\delta n_{I1} - \frac{k}{(D_{I1} - D_{P1})q^2 + k}\delta n_{P1}\right)\exp\left(-D_{P1}q^2 t\right)\right\}
\]

(SI-3)

where \(\alpha' = a g_1 \) and

\[
\delta n'_R = \frac{\delta n_{R1} - (1 - g_1)\delta n_{I1}}{g_1}
\]

(SI-4).

Eq. (SI-3) is the same as eq. (3) except for its coefficient. Because the origin of the difference between \(\delta n_{R1} \) and \(\delta n_{I1} \) in eq. (3) is the formation of the adduct species, the ratio of \(\delta n_{R1} \) and \(\delta n_{I1} \) should be the same to that of the EL-LOV case.

We fitted the diffusion signal of EL222 by eq. (3) (or (SI-3)), and the parameters are listed in Table SI-1. The fitting parameter of the apparent refractive index change \(\delta n'_R \) was obtained as \(\delta n'_R = 1.118 \), when we normalized the values of refractive index changes as \(\delta n_1 = 1 \). By using eq. (SI-4), we obtained \(g_1 \) from the \(\delta n'_R \) and the intrinsic refractive index changes, \(\delta n_{R1} \) and \(\delta n_{I1} \). From this calculation, we obtained \(g_1 = 0.08 \).

Table SI-1 Diffusion coefficients \((D/10^{-11} \text{ m}^2\text{s}^{-1})\), the refractive index changes \((\delta n)\) relative to \(\delta n_{I1} \) and time constants of the reactions \((k/ \text{M}^{-1}\text{s}^{-1})\) obtained by the analysis of TG signals for EL-LOV and EL222. The fitting parameters were obtained by the analysis using eq. (5) (for EL-LOV) and eq. (3) (for EL222).

<table>
<thead>
<tr>
<th></th>
<th>(D_{R1})</th>
<th>(D_{I1})</th>
<th>(D_{P1})</th>
<th>(D_{R2})</th>
<th>(D_{P2})</th>
<th>(\delta n_{R1})</th>
<th>(\delta n_{I1})</th>
<th>(\delta n_{P1})</th>
<th>(\delta n_{R2})</th>
<th>(\delta n_{P2})</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-LOV</td>
<td>9.2</td>
<td>9.2</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>1.009</td>
<td>1</td>
<td>0.976</td>
<td>0.986</td>
<td>0.976</td>
<td>1.4 × 10^5</td>
</tr>
<tr>
<td>EL222</td>
<td>8.8</td>
<td>8.5</td>
<td>6.6</td>
<td>1.118</td>
<td>1</td>
<td>1.025</td>
<td>8.6 × 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SI-2 Temporal profile of the transient lens signal
Fig. SI-1 A TrL signal of EL222 (red line) and the calorimetric reference sample (blue line) after photoexcitation.