Phase diagrams in the LiBH$_4$-NaBH$_4$-KBH$_4$ system

Erika M. Dematteis, Eugenio R. Pinatel, Marta Corno, Torben R. Jensen and Marcello Baricco

a)Department of Chemistry and Inter-departmental Center Nanostructured Interfaces and Surfaces (NIS) University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy

b)Department of Chemistry, Center for Materials Crystallography (CMC) and Interdisciplinary Nanoscience Center (iNANO) Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

SUPPLEMENTARY INFORMATION
Figure S1 – Investigated compositions in the ternary system. For more details, see Table 1.
Table S1 – List and details of synchrotron facilities.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Beam Line</th>
<th>Wavelength (Å)</th>
<th>Exposure Time (s)</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXLAB laboratories, MAX-II Lund, Sweden</td>
<td>I711</td>
<td>0.9938</td>
<td>30</td>
<td>T50Li, T50Na, T50K</td>
</tr>
<tr>
<td>Dimond Light Source Didcot, UK</td>
<td>I11</td>
<td>0.8259</td>
<td>5</td>
<td>T1</td>
</tr>
<tr>
<td>DESY Hamburg, Germany</td>
<td>PETRA III</td>
<td>0.2072</td>
<td>5</td>
<td>T2</td>
</tr>
<tr>
<td>ESRF Grenoble, France</td>
<td>BM01</td>
<td>0.7129</td>
<td>5</td>
<td>T3</td>
</tr>
</tbody>
</table>
Polymorphic transition of LiBH$_4$ is observed at 109 °C (calculated temperature 98 °C), followed by eutectic melting at 112 °C (calculated temperature 101 °C). At 140 °C the calculations reveals the complete melting of the cubic phase two (KBH$_4$) that is no more visible in the in-situ data after the eutectic melting. Experimental temperatures are higher with respect to calculated one probably because of kinetic reasons. Liquidus temperature is recorded at 323 °C (calculated temperature 251 °C).
At 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively, but they are not clearly revealed by the in-situ investigation.

At 185 °C (174 °C calculated temperature), the cubic phase two (KBH₄) disappear because of the formation of a single-phase cubic solution. In the experiment, the solid solution between NaBH₄ and KBH₄ starts to form at 114 °C and one phase solid solution is observed at 215 °C. Liquidus temperature is recorded at 375 °C (calculated temperature 400 °C).
Figure S4 - Amount of calculated phases (CALPHAD, left) and SR-PXD (right) of T50K, 0.25LiBH₄-0.25NaBH₄-0.50KBH₄ (λ = 0.9938 Å, ΔT/Δt = 5 °C/min, argon atmosphere).

As reported before, at 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively, from in-situ investigation the eutectic melting can be observed at 110 °C. At 185 °C (174 °C calculated temperature), the cubic phase two (KBH₄) disappear because of the formation of a single-phase cubic solution. Liquidus temperature is recorded at 352 °C (calculated temperature 400 °C).
Figure S5 – DSC of 0.682NaBH$_4$-0.318KBH$_4$ mixture, heating and cooling at 5 °C/min under 10 bars of H$_2$.
As reported before, at 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively. From in-situ investigation, the transitions can be observed at 95 °C and 104 °C respectively, in good agreement also with DSC measurement (start of DSC peak at 97 °C and 103 °C, on heating, respectively). At 121 °C NaBH₄ disappears (melting), and the liquidus temperature is recorded at 155 °C (calculated temperature 125 °C) but it cannot be clearly reveal by DSC measurements, only a noisy baseline is recorded after the eutectic melting. On cooling, the same transitions can be observed under undercooled conditions.
Figure S7 – DSC (left), amount of calculated phases (CALPHAD, middle) and SR-PXD (right) of T2, 0.68LiBH$_4$-0.08NaBH$_4$-0.24KBH$_4$ ($\lambda = 0.8259$ Å, $\Delta T/\Delta t = 5$ °C/min, argon atmosphere, 2nd cycle of heating (a) and cooling (b)). Presence of WC due to ball milling.

At 82 °C calculated temperature, a single cubic solid solution phase is formed, but it is not revealed by in-situ investigation. At 100 °C and 101 °C calculated temperature, polymorphic transition of LiBH$_4$ and eutectic melting are taking place respectively, while from in-situ investigation from 103 °C to 111 °C both orthorhombic and hexagonal LiBH$_4$ are present and then melt. Calculations predict that the cubic phase is the first to melt (103 °C), followed by the orthorhombic (106 °C) and hexagonal phase (109 °C). Experimentally orthorhombic and hexagonal phase are completely melted at 111 °C, followed by the melting of NaBH$_4$ (121 °C) and KBH$_4$ (145 °C, liquidus temperature, 109 °C calculated liquidus temperature. On cooling, the same transitions can be observed under undercooled conditions.