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1. Analytical formulas for spin-triplet states 

1.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-triplet states (S 

= 1) 

The spin Hamiltonian having electron-Zeeman (abbreviated to eZ) and zero-field splitting 

(ZFS) terms is given in the matrix form as follows; 

ℋZFS+eZ = 𝐒̃ ∙ 𝐃 ∙ 𝐒 + 𝛽𝐒̃ ∙ 𝐠 ∙ 𝐁 

where S is a spin operator, g and D denote the g- and D-tensor, respectively, and β is the Bohr 

magneton and B is an external magnetic field. In the principal axis system, this Hamiltonian 

(termed as ZFS/e-Zeeman spin Hamiltonian in MS) can be represented by using of the zero-

filed splitting parameters D and E and the components of S, g and B as 

ℋZFS+eZ = 𝐷[𝑆𝑧
2 − 𝑆(𝑆 + 1) 3⁄ ] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝛽(𝑔𝑥𝑆𝑥𝐵𝑥 + 𝑔𝑦𝑆𝑦𝐵𝑦 + 𝑔𝑧𝑆𝑧𝐵𝑧),  

where the collinearity between the tensors is assumed.  

In the triplet case with the static magnetic field along the principal z-axis, the matrix 

representation of ℋZFS+eZ is as follows; 

 

𝐻ZFS+eZ
triplet

=

(

 
 
 

𝐷

3
+ 𝑔𝑧

true𝛽𝐵 0 𝐸

0 −
2𝐷

3
0

𝐸 0
𝐷

3
− 𝑔𝑧

true𝛽𝐵)

 
 
 
. 

The number in the bra-kets denotes MS (MS = S, S – 1, …, –S; S is a spin quantum number of 

the system under study). The diagonalized eigenenergies EMs and corresponding wavefunctions 

ΨMs are in the following.  

𝐸+1 =
𝐷

3
+ √𝐸2 + (𝑔𝑧

true𝛽𝐵)2

𝐸−1 =
𝐷

3
− √𝐸2 + (𝑔𝑧

true𝛽𝐵)2

𝐸0 = −
2𝐷

3

 

Ψ+1 = (√𝐸2 + (𝑔𝑧
true𝛽𝐵)2 + 𝑔𝑧

true𝛽𝐵) |+1⟩ + 𝐸|−1⟩

Ψ−1 = −𝐸|+1⟩ + (√𝐸2 + (𝑔𝑧
true𝛽𝐵)2 + 𝑔𝑧

true𝛽𝐵) |−1⟩

Ψ0 = |0⟩

 

Equalizing the energy difference between E+1 and E–1 to gz
effβB gives 

𝐸+1 − 𝐸−1 = 2√𝐸2 + (𝑔𝑧
true𝛽𝐵)2 = 𝑔𝑧

eff𝛽𝐵 

4𝐸2 + 4(𝑔𝑧
true𝛽𝐵)2 = (𝑔𝑧

eff𝛽𝐵)
2
, 

<+1| <0| <–1| 

|+1> 

|0> 

|–1> 

(S3) 

(S1a) 

(S1b) 

(S1c) 

(S2a) 

(S2b) 

(S2c) 
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where gz
eff denotes the effective gz-value. Comparing the coefficient of equation (S3) with 

respect to B, we obtain gz
eff/gz

true = 2 if and only if E = 0. Otherwise the general relationship of 

gz
eff/gz

true does not hold. 

 

It is worth calculating the transition probability |<Ψ–Ms|Si|Ψ+Ms>|2 (i = x, y, z) between the MS 

= ±1 dominant transition. According to the spin functions, only Sz components have non-zero 

values; 

|⟨Ψ−1|𝑆𝑧|Ψ+1⟩|
2 =

4𝐸2

𝑁4
(√𝐸2 + (𝑔𝑧

true𝛽𝐵)2 + 𝑔𝑧
true𝛽𝐵)

2

,  

where N denotes the normalization factor. 

 

When the magnetic field is along the x-axis, the energy eigenvalues and eigenfunctions are 

given by exploiting the cyclic permutation relationship between the principal axes,[S1–S4]  

𝐸𝑥,+1 =
1

6
(3𝐸 − 𝐷) +

1

2
√(𝐸 + 𝐷)2 + 4(𝑔𝑥

true𝛽𝐵)2

𝐸𝑥,−1 =
1

6
(3𝐸 − 𝐷) −

1

2
√(𝐸 + 𝐷)2 + 4(𝑔𝑥

true𝛽𝐵)2

𝐸𝑥,0 =
𝐷

3
− 𝐸

 

Ψ𝑥,+1 = |+1⟩ −
𝐸 + 𝐷 − √(𝐸 + 𝐷)2 + 4(𝑔𝑥

true𝛽𝐵)2

√2𝑔𝑥
true𝛽𝐵

|0⟩ + |−1⟩

Ψ𝑥,+1 = |+1⟩ −
𝐸 + 𝐷 + √(𝐸 + 𝐷)2 + 4(𝑔𝑥

true𝛽𝐵)2

√2𝑔𝑥
true𝛽𝐵

|0⟩ + |−1⟩

Ψ𝑥,0 = |+1⟩ − |−1⟩ 

 

where the subscripts ±1, 0 are taken over from those of the eigenenergies/eigenfunctions with 

the principal z-axis, and the normalization factor was omitted for simplicity. To equalize the 

energy difference between Ex,±1 to gx
effβB, 

𝐸𝑥,+1 − 𝐸𝑥,−1 = √(𝐸 + 𝐷)2 + 4(𝑔𝑥
true𝛽𝐵)2 = 𝑔𝑥

eff𝛽𝐵 

(𝐸 + 𝐷)2 + 4(𝑔𝑥
true𝛽𝐵)2 = (𝑔𝑥

eff𝛽𝐵)
2
. 

In this case, there is no special solution in the range of 0 ≦ E/D ≦ 1/3. 

Under B//x, the transition probability |<Ψ–Ms|Si|Ψ+Ms>|2 (i = x, y, z) between the MS = ±1 

dominant transition is different from that in B//z. 

|⟨Ψ𝑥,−1|𝑆𝑥|Ψ𝑥,+1⟩|
2
=
1

𝑁′4
[
3𝐸 + 3𝐷 + √(𝐸 + 𝐷)2 + 4(𝑔𝑥

true𝛽𝐵)2

2𝐵
]

2

, 

where N’ denotes the normalization factor. 

(S4a) 

(S4b) 

(S4c) 

(S5a) 

(S5b) 

(S5c) 

(S6) 
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Figure S1 Transition probabilities between the |MS = ±1>-dominant transitions for the principal axes. 

(gtrueβB/D = 0.1) Transition probabilities for the parallel transition (right) in the case of B//x or y are zero for 

all the range of E/D. 
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1.2 The geff-gtrue relationships by using of the genuine Zeeman perturbation approach in 

the case of spin-triplet states (S = 1) 

In the genuine Zeeman perturbation approach, the ZFS Hamiltonian (ℋZFS = 𝐒̃ ∙ 𝐃 ∙ 𝐒) is 

taken as the unperturbed term and the others (here only the electron-Zeeman Hamiltonian, 

ℋeZ = 𝛽𝐒̃ ∙ 𝐠 ∙ 𝐁) are considered as the perturbed term. Based on this procedure, we derive the 

perturbed energies to the second order. The unperturbed Hamiltonian and the corresponding 

matrix representation (𝐻ZFS
triplet

) in the |MS> basis are 

 

𝐻ZFS
triplet

=

(

 
 
 

𝐷

3
0 𝐸

0 −
2𝐷

3
0

𝐸 0
𝐷

3)

 
 
 

 

The eigenenergies 𝜀𝑀𝑠
(0)

 and the eigenfunctions 𝜑𝑀𝑠
(0)

 are 

𝜀+1
(0) =

𝐷

3
+ 𝐸, 𝜑+1

(0) =
|+1⟩ + |−1⟩

√2

𝜀−1
(0) =

𝐷

3
− 𝐸, 𝜑−1

(0) =
|+1⟩ − |−1⟩

√2

𝜀0
(0) = −

2𝐷

3
, 𝜑0

(0) = |0⟩.

 

The electron-Zeeman term expanded with the new basis {𝜑𝑀𝑠
(0)

} are with B//z  

𝐻eZ
triplet

= 𝑔𝑧
true𝛽𝐵 (

1 0 0
0 0 0
0 0 −1

) → 𝐻eZ
′ = 𝑔𝑧

true𝛽𝐵 (
0 0 1
0 0 0
1 0 0

) 

Since the perturbed electron-Zeeman Hamiltonian includes only non-diagonal terms, the 

interaction with respect to the magnetic field will be taken to the second-order energy.  

𝐸+1
′ =

𝐷

3
+ 𝐸 +

(𝑔𝑧
true𝛽𝐵)2

2𝐸

𝐸−1
′ =

𝐷

3
− 𝐸 −

(𝑔𝑧
true𝛽𝐵)2

2𝐸

 

In a similar manner to the exact treatment, the gz
eff-gz

true relationship is obtained. 

𝐸+1
′ − 𝐸−1

′ = 2𝐸 +
(𝑔𝑧
true𝛽𝐵)2

𝐸
= 𝑔𝑧

eff𝛽𝐵 

𝑔𝑧
eff𝛽𝐵𝐸 = 2𝐸2 + (𝑔𝑧

true𝛽𝐵)2 

Comparing the coefficient in Equation (S9) does not give any general and specific gz
eff-gz

true 

relationship. 

The permutation of the subscripts x, y, z gives rise to the following ZFS formulas. 

<+1| <0| <–1| 

|+1> 

|0> 

|–1> 

(S9) 

(S7c) 

(S7a) 

(S7b) 

(S8a) 

(S8b) 
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−
2𝐷

3

𝑩∥𝑥
→  −

2

3
[
1

2
(3𝐸 − 𝐷)] =

𝐷

3
− 𝐸 

−
2𝐷

3

𝑩∥𝑦
→  −

2

3
[−
1

2
(3𝐸 + 𝐷)] =

𝐷

3
+ 𝐸 
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2. Analytical formulas for spin-quartet states 

2.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-triplet states (S 

= 3/2) 

The spin Hamiltonian in the presence of the electron-Zeeman term is represented in the 

matrix form in the principal-axis system with B//z as follows; 

 

𝐻eZ+ZFS
quartet

=

(

 
 
𝐷 +

3

2
𝑔𝑧
true𝛽𝐵

0

√3𝐸
0

0

−𝐷 +
1

2
𝑔𝑧
true𝛽𝐵

0

√3𝐸

√3𝐸
0

−𝐷 −
1

2
𝑔𝑧
true𝛽𝐵

0

0

√3𝐸
0

𝐷 −
3

2
𝑔𝑧
true𝛽𝐵

)

 
 

 

This matrix can be divided into two 2 × 2 conjugate matrixes in which the basis set is {|+3/2>, 

|–1/2>} (and {|–3/2>, |+1/2>}):  

 

𝐻eZ+ZFS,1
quartet

= (
𝐷 +

3

2
𝑔𝑧
true𝛽𝐵 √3𝐸

√3𝐸 −𝐷 −
1

2
𝑔𝑧
true𝛽𝐵

). 

For the basis of {|–3/2>, |+1/2>}, the sign of the Zeeman terms are required to change. The 

diagonalized eigenenergies and eigenfunctions for the former conjugate matrix are 

𝐸
+
3
2
=
1

2
𝑔𝑧
true𝛽𝐵 + √(𝐷 + 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2, Ψ
+
3
2
= cos 𝜃+ |+

3

2
⟩ + sin 𝜃+ |−

1

2
⟩

𝐸
−
1
2
=
1

2
𝑔𝑧
true𝛽𝐵 − √(𝐷 + 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2, Ψ
−
1
2
= cos 𝜃+ |−

1

2
⟩ − sin 𝜃+ |+

3

2
⟩

 

where 

tan 2𝜃+ =
√3𝐸

𝐷 + 𝑔𝑧
true𝛽𝐵

 

Algebraic expressions without trigonometric functions are available for accurate numerical 

computations.  

It should be noted that EMs denotes the energy eigenvalue of the MS-sublevel dominant 

admixed state in the presence of the Zeeman terms. The other eigenvalues corresponding to the 

latter conjugate spin states {|–3/2>, |+1/2>} are derived by replacing B with –B. This arises 

from the intrinsic nature of double-groups to which half-integer spins belong. Equalizing the 

energy differences between |±3/2> states to gz
effβB gives 

𝐸
+
3
2
− 𝐸

−
3
2
= 𝑔𝑧

true𝛽𝐵 + √(𝐷 + 𝑔𝑧
true𝛽𝐵)2 + 3𝐸2 − √(𝐷 − 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2 = 𝑔𝑧
eff𝛽𝐵 

√(𝐷 + 𝑔𝑧
true𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2 = (𝑔𝑧
eff − 𝑔𝑧

true)𝛽𝐵. 

Squaring the both side and collecting the terms with the integer indices of B. 

<+3/2| <+1/2| <–1/2| <–3/2| 

|+3/2> 

|+1/2> 

|–1/2> 

|–3/2> 

<+3/2| <–1/2| 

|+3/2> 

|–1/2> 

(S10a) 

(S10b) 
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2𝐷2 + 6𝐸2 + 2(𝑔𝑧
true𝛽𝐵)2 − (𝑔𝑧

eff − 𝑔𝑧
true)

2
(𝛽𝐵)2

= 2√(𝐷 + 𝑔𝑧
true𝛽𝐵)2 + 3𝐸2√(𝐷 − 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2 

Then, we obtain the following.  

[2𝐷2 + 6𝐸2 + 2(𝑔𝑧
true𝛽𝐵)2 − (𝑔𝑧

eff − 𝑔𝑧
true)

2
(𝛽𝐵)2]

2

= 4[(𝐷 + 𝑔𝑧
true𝛽𝐵)2 + 3𝐸2][(𝐷 − 𝑔𝑧

true𝛽𝐵)2 + 3𝐸2] 

(𝐷2 + 3𝐸2)(𝑔𝑧
eff)

2
− 2(𝐷2 + 3𝐸2)𝑔𝑧

eff𝑔𝑧
true − 3(𝐷2 − 𝐸2)(𝑔𝑧

true)2 = 0 

𝑔𝑧
eff

𝑔𝑧
true

=
𝐷2 + 3𝐸2 ± 2𝐷√𝐷2 + 3𝐸2

𝐷2 + 3𝐸2
 

= 1 ±
2𝐷

√𝐷2 + 3𝐸2
 

= 1 ±
2

√1 + 3𝜆2
 

where λ = E/D. For the other principal-axis orientations, as well known, the cyclic permutation 

of the subscripts for the axes, Dz → Dx, Dx → Dy, Dy → Dz gives the corresponding values and 

functions; i.e., for the static magnetic field B parallel to the principal x-axis, the transformation 

of D → 1/2(3E – D) and E → –1/2(E + D), and for B//y, D → –1/2(3E + D) and E → 1/2(E – D) 

under the definition of the D- and E-values give the corresponding expressions, respectively.[S1–

S4] 

It is worth calculating the transition probabilities of the |MS = ±1/2> and |±3/2>-dominant 

transitions. We consider only the “quantum-mechanical/group-theoretic” transition 

probabilities PMs = |<Ψ–Ms|Sx|Ψ+Ms>|2 and exclude the Boltzmann factor depending on the energy 

differences for simplicity. For the |MS = ±1/2>-dominant transition, 

𝑃±1
2
= [(cos 𝜃− ⟨+

1

2
| − sin 𝜃− ⟨−

3

2
|) (𝑆𝑥 cos 𝜃+ |−

1

2
⟩ − 𝑆𝑥 sin 𝜃+ |+

3

2
⟩)]

2

 

= [(cos 𝜃− ⟨+
1

2
| − sin 𝜃− ⟨−

3

2
|) (2 cos 𝜃+ |+

1

2
⟩ +
√3

2
cos 𝜃+ |−

3

2
⟩ −
√3

2
sin 𝜃+ |+

1

2
⟩)]

2

 

= [2 cos 𝜃+ cos 𝜃− −
√3

2
sin 𝜃+ cos 𝜃− −

√3

2
cos 𝜃+ sin 𝜃−]

2

, 

and for the |MS = ±3/2>-dominant transition, 

𝑃±3
2
= [(cos 𝜃− ⟨−

3

2
| + sin 𝜃− ⟨+

1

2
|) (𝑆𝑥 cos 𝜃+ |+

3

2
⟩ + 𝑆𝑥 sin 𝜃+ |−

1

2
⟩)]

2

 

= [(cos 𝜃− ⟨−
3

2
| + sin 𝜃− ⟨+

1

2
|) (
√3

2
cos 𝜃+ |+

1

2
⟩ + 2 sin 𝜃+ |+

1

2
⟩ +
√3

2
sin 𝜃+ |−

3

2
⟩)]

2

 

(S11) (S11) 
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= [2 sin 𝜃+ sin 𝜃− +
√3

2
sin 𝜃+ cos 𝜃− +

√3

2
cos 𝜃+ sin 𝜃−]

2

, 

where the definition for θhas already been given above and 

tan 2𝜃− =
√3𝐸

𝐷 − 𝑔𝑧
true𝛽𝐵

 

 

 

Figure S2 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 3/2. The subscripts, x, y and z 

denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships are given in the 

solid lines. Those derived by the genuine Zeeman perturbation treatment to the second order are depicted in 

the broken curves. There is no discrepancy between the exact and genuine Zeeman perturbation treatments 

for S = 3/2, as described in the text. 

 

 
Figure S3 Transition probabilities between the ±MS dominant transitions, |<Ψ–Ms|Sx|Ψ+Ms>|2 calculated with 

equations in the text for gtrueβB/D = 0.1. In the right figure, the line for B//z is broken for clarity.  
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2.2 The geff-gtrue relationships by using of the genuine Zeeman perturbation approach in 

the case of spin-quartet states (S = 3/2) 

The perturbed energies and wavefunctions for the spin-quartet case were discussed by 

Pilbrow.[S5] The matrix representation of the ZFS Hamiltonian in the principal-axis system is 

 

𝐻ZFS
quartet

= (

𝐷
0

√3𝐸
0

0
−𝐷
0

√3𝐸

√3𝐸
0
−𝐷
0

0

√3𝐸
0
𝐷

) 

This matrix can be divided into two 2 × 2 equivalent matrixes of which the basis set is {|+3/2>, 

|–1/2>} and {|–3/2>, |+1/2>} 

 

𝐻ZFS
quartet

= ( 𝐷 √3𝐸

√3𝐸 −𝐷
) 

The diagonalized eigenenergies and corresponding eigenfunctions are in the following.  

𝜀
±3
2

(0)
= 𝐷∗, 𝜑

±3
2

(0)
= cos 𝜃 |±

3

2
⟩ + sin 𝜃 |∓

1

2
⟩

𝜀
±1
2

(0)
= −𝐷∗, 𝜑

±1
2

(0)
= cos 𝜃 |±

1

2
⟩ − sin 𝜃 |∓

3

2
⟩

    

where 

𝐷∗ = √𝐷2 + 3𝐸2 

and 

tan 2𝜃 =
√3𝐸

𝐷
. 

The electron-Zeeman Hamiltonian is rewritten in terms of the ZFS eigenstates with B//z as 

follows;  

𝐻eZ
quartet

=

(

 
 

3

2
𝑔𝑧
true𝛽𝐵

0
0
0

0
1

2
𝑔𝑧
true𝛽𝐵

0
0

0
0

−
1

2
𝑔𝑧
true𝛽𝐵

0

0
0
0

−
3

2
𝑔𝑧
true𝛽𝐵

)

 
 

 

→ 𝐻eZ
′ =

𝑔𝑧
true𝛽𝐵

2
(

3 cos2 𝜃 − sin2 𝜃
0

−4 sin 𝜃 cos𝜃
0

0
cos2 𝜃 − 3 sin2 𝜃

0
−4 sin 𝜃 cos 𝜃

−4sin 𝜃 cos𝜃
0

− cos2 𝜃 + 3 sin2 𝜃
0

0
−4 sin 𝜃 cos𝜃

0
−3 cos2 𝜃 + sin2 𝜃

). 

Thus the second-order energies and the first-order spin functions are 

𝐸
+3
2

′ = 𝐷∗ +
1

2
𝑔𝑧
true𝛽𝐵(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧
true𝛽𝐵)2 sin2 𝜃 cos2 𝜃

𝐷∗
 

𝐸
−3
2

′ = 𝐷∗ −
1

2
𝑔𝑧
true𝛽𝐵(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧
true𝛽𝐵)2 sin2 𝜃 cos2 𝜃

𝐷∗
 

<+3/2| <+1/2| <–1/2| <–3/2| 

|+3/2> 

|+1/2> 

|–1/2> 

|–3/2> 

<±3/2| <∓1/2| 
|±3/2> 

|∓1/2> 

(S12a) 

(S12b) 

(S13a) 

(S13d) 
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𝐸
+1
2

′ = −𝐷∗ +
1

2
𝑔𝑧
true𝛽𝐵(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧
true𝛽𝐵)2 sin2 𝜃 cos2 𝜃

𝐷∗
 

𝐸
−1
2

′ = −𝐷∗ −
1

2
𝑔𝑧
true𝛽𝐵(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧
true𝛽𝐵)2 sin2 𝜃 cos2 𝜃

𝐷∗
 

Ψ
+3
2

′ = cos 𝜃 |+
3

2
⟩ + [

𝑔𝑧
true𝛽𝐵 sin 𝜃 cos 𝜃

𝐷∗
+ sin 𝜃] |−

1

2
⟩ 

Ψ
−3
2

′ = cos 𝜃 |−
3

2
⟩ + [

𝑔𝑧
true𝛽𝐵 sin 𝜃 cos 𝜃

𝐷∗
+ sin 𝜃] |+

1

2
⟩ 

Ψ
+1
2

′ = cos 𝜃 |+
1

2
⟩ − [

𝑔𝑧
true𝛽𝐵 sin 𝜃 cos 𝜃

𝐷∗
+ sin 𝜃] |−

3

2
⟩ 

Ψ
−1
2

′ = cos 𝜃 |−
1

2
⟩ − [

𝑔𝑧
true𝛽𝐵 sin 𝜃 cos 𝜃

𝐷∗
+ sin 𝜃] |+

3

2
⟩ 

Noticeably, these perturbed energies are equivalent to the set of the exact energies derived in 

the previous section. Equalizing the energy differences between the conjugate spin sublevels to 

gz
effβB. 

𝐸
+3
2

′ − 𝐸
−3
2

′ = 𝑔𝑧
true𝛽𝐵(3 cos2 𝜃 − sin2 𝜃) = 𝑔𝑧

eff𝛽𝐵 

𝐸
+1
2

′ − 𝐸
−1
2

′ = 𝑔𝑧
true𝛽𝐵(cos2 𝜃 − 3 sin2 𝜃) = 𝑔𝑧

eff𝛽𝐵 

Therefore, the gz
eff/gz

true as a function of λ = E/D (θ is a function of λ) is  

𝑔𝑧
eff

𝑔𝑧
true

= 3 cos2 𝜃 − sin2 𝜃 

for the |MS = ±3/2>-dominant transition and  

𝑔𝑧
eff

𝑔𝑧
true

= cos2 𝜃 − 3 sin2 𝜃 

for the |MS = ±1/2>-dominant transition. Figure S2 depicts the geff/gtrue derived from the genuine 

Zeeman perturbation approach as well as the exact treatment described in the previous section. 

The cyclic permutation of the subscripts of x, y and z yields the geff-gtrue relationship in the case 

of B//x and y without difficulty.[S1–S4] 

  

(S15a) 

(S15b) 

(S13b) 

(S13c) 

(S14a) 

(S14b) 

(S14c) 

(S14d) 
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2.3 Global permutation rules for the ZFS energy in the case of S = 3/2 

In the case of spin-quartet states (S = 3/2), the zeroth-order energy (from the ZFS 

Hamiltonian) is given by 

𝐷∗ = √𝐷2 + 3𝐸2. 

This value is field independent. Thus, it must hold for the cyclic permutation of the subscripts 

for the axes Dz → Dx, Dx → Dy, Dy → Dz. For the static magnetic field B parallel to the principal 

x-axis, the transformation of 𝐷 →
1

2
(3𝐸 − 𝐷)  and 𝐸 → −

1

2
(𝐸 + 𝐷) , and for B//y, 𝐷 →

−
1

2
(3𝐸 + 𝐷)  and 𝐸 →

1

2
(𝐸 − 𝐷)  under the definition of the D- and E-values give the 

corresponding expressions, respectively.[S1–S4] Here, we show the preservation of the zeroth-

order energy in the case of B//x, 

𝐷2 + 3𝐸2 

𝐁∥𝑥
→ [

1

2
(3𝐸 − 𝐷)]

2

+ 3 [−
1

2
(𝐸 + 𝐷)]

2

= 𝐷2 + 3𝐸2, 

and in the case of B//y, 

𝐷2 + 3𝐸2 

𝐁∥𝑦
→ [−

1

2
(3𝐸 + 𝐷)]

2

+ 3 [
1

2
(𝐸 − 𝐷)]

2

= 𝐷2 + 3𝐸2. 
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3. Analytical formula for spin-quintet states 

3.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-triplet states (S = 

2) 

The ZFS-electronic Zeeman Hamiltonian in the case of quintet states can be divided to two 

matrixes. The basis set of one of the two is {|+1>, |–1>} (referring to 𝐻ZFS+eZ,1
quintet

) and the other 

is {|+2>, |0>, |–2>} (𝐻ZFS+eZ,2
quintet

). The division scheme arises from the spin symmetry of 

permutation. The former is related to the odd parity and the latter to the even parity. 𝐻ZFS+eZ,1
quintet

 

with B//z can easily be diagonalized and we obtain the eigenenergies and eigenfunctions in the 

following.  

 

𝐻ZFS+eZ,1
quintet

= (
−𝐷 + 𝑔𝑧

true𝛽𝐵 3𝐸

3𝐸 −𝐷 − 𝑔𝑧
true𝛽𝐵

) 

𝐸±1 = −𝐷 ± √9𝐸2 + (𝑔𝑧
true𝛽𝐵)2, 𝜑±1 = cos 𝜃 |±1⟩ ± sin 𝜃 |∓1⟩ 

tan 2𝜃 =
3𝐸

𝑔𝑧
true𝛽𝐵

 

Equalizing the energy difference E+1 between E–1 to gz
effβB, 

𝐸+1 − 𝐸−1 = 2√9𝐸2 + (𝑔𝑧
true𝛽𝐵)2 = 𝑔𝑧

eff𝛽𝐵 

leading to  

36𝐸2 + 4(𝑔𝑧
true𝛽𝐵)2 = (𝑔𝑧

eff𝛽𝐵)
2
. 

Similar to the case of spin triplet states, comparing the coefficients of B in Equation (S17) 

provides the specific relation gz
eff/gz

true = 2 if and only if E = 0. Otherwise the general gz
eff-gz

true 

relationship does not hold. 

The matrix representation of 𝐻ZFS+eZ,2
quintet

 in the basis of {|+2>, |0>, |–2>} with B//z is as 

follows:  

 

𝐻ZFS+eZ,2
quintet

= (

2𝐷 + 2𝑔𝑧
true𝛽𝐵 √6𝐸 0

√6𝐸 −2𝐷 √6𝐸

0 √6𝐸 2𝐷 − 2𝑔𝑧
true𝛽𝐵

). 

The eigenenergies of this matrix are the solutions of the following cubic equation; 

𝑥3 − 2𝐷𝑥2 − 4[𝐷2 + 3𝐸2 + (𝑔𝑧
true𝛽𝐵)2]𝑥 + 8𝐷3 + 24𝐷𝐸2 − 8𝐷(𝑔𝑧

true𝛽𝐵)2 = 0. 

In order to use Viete’s theorem, eliminating the x2 term by replacing x with x + 2D/3 yields 

𝑥3 =
4

3
[4𝐷2 + 9𝐸2 + 3(𝑔𝑧

true𝛽𝐵)2]𝑥 −
128𝐷3

27
− 16𝐷𝐸2 +

32𝐷(𝑔𝑧
true𝛽𝐵)2

3
. 

(S17) 

<+2| <0| <–2| 

|+2> 

|0> 

|–2> 

<+1| <–1| 

|+1> 

|–1> 

(S16) 
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The trigonometric solutions for the above cubic equation are 

𝑥𝑛 = 2𝑎 cos [
1

3
arccos (

𝑏

2𝑎
) +

2𝑛𝜋

3
] (𝑛 = 0, 1, 2) 

where 

𝑎 =
2

3
√4𝐷2 + 9𝐸2 + 3(𝑔𝑧

true𝛽𝐵)2 

𝑏 = −
32𝐷3 + 108𝐷𝐸2 − 72𝐷(𝑔𝑧

true𝛽𝐵)2

12𝐷2 + 27𝐸2 + 9(𝑔𝑧
true𝛽𝐵)2

 

and n = 0, 1 and 2 correspond to the |MS = +2>, |0> and |–2>-dominant states, respectively. Thus 

the eigenenergies and corresponding eigenfunctions are in the following.  

𝐸𝑛 = 2𝑎 cos [
1

3
arccos (

𝑏

2𝑎
) +

2𝑛𝜋

3
] +

2𝐷

3
 

Ψ𝑛 = 𝛼𝑛|+2⟩ + 𝛽𝑛|0⟩ + 𝛾𝑛|−2⟩ 

𝛼𝑛
𝛽𝑛
=

−√6𝐸

2𝐷 + 2𝑔𝑧
true𝛽𝐵 − 𝐸𝑛

, 

𝛾𝑛
𝛽𝑛
=

−√6𝐸

2𝐷 − 2𝑔𝑧
true𝛽𝐵 − 𝐸𝑛

, 

𝛽𝑛 = √1 − 𝛼𝑛2 − 𝛾𝑛2 

The gz
eff-gz

true relationship for the MS = ±2 transition is obtained with equalizing the energy 

difference of E+2 – E–2 to gz
effβB, which is generally field-dependent and the special solution is 

gz
eff/gz

true = 4 if and only if E = 0.  

 

Transition probability are calculated numerically: 

 

Figure S4 Transition probabilities between the ±MS dominant states PMs = |<Ψ–Ms|Sx|Ψ+Ms>|2 for the static 

magnetic field B parallel to the x, y and z axis, in the case of gtrueβB/D = 0.1. 
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Figure S5 Transition probabilities between the ±MS dominant states P±Ms = |<Ψ–Ms|Sz|Ψ+Ms>|2 for the static 

magnetic field B parallel to z axis, in the case of gtrueβB/D = 0.1. In the case of B//x and y, the transition 

probabilities are zero in the range of 0 ≦ λ ≦ 1/3. 
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3.2 The geff-gtrue relationships by using of the genuine Zeeman perturbation approach in 

the case of spin-quintet states (S = 2) 

The ZFS Hamiltonian can be divided into two matrices with the size of 2 × 2 and 3 × 3. The 

2 × 2 and 3 × 3 matrixes correspond to the basis sets of {|+1>, |–1>} and {|+2>, |0>, |–2>}, 

respectively. The former is 

 

𝐻ZFS,1
quintet

= (
−𝐷 3𝐸
3𝐸 −𝐷

). 

The diagonalized eigenenergies and eigenfunctions are 

𝜀+1
(0) = −𝐷 + 3𝐸, 𝜑+1

(0) = (|+1⟩ + |−1⟩) √2⁄

𝜀−1
(0) = −𝐷 − 3𝐸, 𝜑−1

(0) = (|+1⟩ − |−1⟩) √2⁄ .
  

The perturbing electron-Zeeman Hamiltonian in the basis of {𝜑+1
(0)

, 𝜑−1
(0)

} with B//z is  

𝐻eZ
quintet

= 𝑔𝑧
true𝛽𝐵 (

1 0
0 −1

) → 𝐻eZ
′ = 𝑔𝑧

true𝛽𝐵 (
0 1
1 0

). 

Being different from the quartet case, the electron-Zeeman terms exist in the off-diagonal 

elements in the perturbing Hamiltonian. Thus the perturbation effects are taken to the second 

order in the Rayleigh-Schrödinger perturbation theory. This is due to the spin symmetry of the 

system. 

The ZFS Hamiltonian in the basis of {|+2>, |0>, |–2>} is given as follows:  

 

𝐻ZFS,2
quintet

= (
2𝐷 √6𝐸 0

√6𝐸 −2𝐷 √6𝐸

0 √6𝐸 2𝐷

). 

The diagonalized eigenenergies and eigenfunctions are 

𝜀+2
(0) = 2𝐷∗, 𝜑+2

(0) = 𝛼+2|+2⟩ + 𝛽+2|0⟩ + 𝛾+2|−2⟩

𝜀0
(0) = −2𝐷∗, 𝜑0

(0) = 𝛼0|+2⟩ + 𝛽0|0⟩ + 𝛾0|−2⟩

𝜀−2
(0) = 2𝐷, 𝜑−2

(0) = (|+2⟩ − |−2⟩) √2⁄

 

where 

𝛼+2
𝛽+2

=
𝛾+2
𝛽+2

=
√6𝐸

2𝐷∗ − 2𝐷
, 𝛽+2 = [1 +

3𝐸2

2(𝐷∗ − 𝐷)2
]

−
1
2

𝛼0
𝛽0
=
𝛾0
𝛽0
=

√6𝐸

−2𝐷∗ − 2𝐷
, 𝛽0 = [1 +

3𝐸2

2(𝐷∗ + 𝐷)2
]

−
1
2

 

and 

𝐷∗ = √𝐷2 + 3𝐸2. 

<+1| <–1| 
|+1> 

|–1> 

<+2| <0| <–2| 

|+2> 

|0> 

|–2> 

(S20a) 

(S20b) 

(S21a) 

(S21b) 

(S21c) 
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The electron-Zeeman Hamiltonian can be transformed in the basis of {𝜑+2
(0)

, 𝜑0
(0)

, 𝜑−2
(0)

} with 

B//z, 

𝐻eZ,2
quintet

= 2𝑔𝑧
true𝛽𝐵 (

1 0 0
0 0 0
0 0 −1

) → 𝐻eZ,2
′ = 2√2𝑔𝑧

true𝛽𝐵(

0 0 𝛼+2
0 0 𝛼0
𝛼+2 𝛼0 0

). 

The perturbed energies to the second order and the wavefunctions to the first order are 

𝐸+2
′ = 2𝐷∗ +

8(𝑔𝑧
true𝛽𝐵)2𝛼+2

2

𝐷∗ −𝐷
 

𝐸+1
′ = −𝐷 + 3𝐸 +

(𝑔𝑧
true𝛽𝐵)2

6𝐸
 

𝐸0
′ = −2𝐷∗ −

8(𝑔𝑧
true𝛽𝐵)2𝛼0

2

𝐷∗ + 𝐷
 

𝐸−1
′ = −𝐷 − 3𝐸 −

(𝑔𝑧
true𝛽𝐵)2

6𝐸
 

𝐸−2
′ = 2𝐷 −

8(𝑔𝑧
true𝛽𝐵)2𝛼+2

2

𝐷∗ − 𝐷
+
8(𝑔𝑧

true𝛽𝐵)2𝛼0
2

𝐷∗ + 𝐷
 

Ψ+2
′ = 𝛼+2|+2⟩ + 𝛽+2|0⟩ + (𝛾+2 +

4𝑔𝑧
true𝛽𝐵𝛼+2
𝐷∗ − 𝐷

) |−2⟩ 

Ψ+1
′ =

1

√2
|+1⟩ + (

1

√2
+
𝑔𝑧
true𝛽𝐵

6𝐸
) |−1⟩ 

Ψ0
′ = 𝛼0|+2⟩ + 𝛽0|0⟩ + (𝛾0 −

4𝑔𝑧
true𝛽𝐵𝛼0
𝐷∗ + 𝐷

) |−2⟩ 

Ψ−1
′ = (

1

√2
−
𝑔𝑧
true𝛽𝐵

6𝐸
) |+1⟩ −

1

√2
|−1⟩ 

Ψ−2
′ = (

1

√2
−
4𝑔𝑧

true𝛽𝐵𝛼+2
𝐷∗ − 𝐷

) |+2⟩ +
4𝑔𝑧

true𝛽𝐵𝛼0
𝐷∗ + 𝐷

|0⟩ −
1

√2
|−2⟩. 

The gz
eff/gz

true relationship for the |MS = ±1>-dominant transition is 

𝐸+1
′ − 𝐸−1

′ = 6𝐸 +
(𝑔𝑧
true𝛽𝐵)2

3𝐸
= 𝑔𝑧

eff𝛽𝐵 

3𝐸𝑔𝑧
eff𝛽𝐵 = 18𝐸2 + (𝑔𝑧

true𝛽𝐵)2 

and for the |MS = ±2>-dominant transition, 

𝐸+2
′ − 𝐸−2

′ = 2𝐷∗ − 2𝐷 +
8(𝑔𝑧

true𝛽𝐵)2𝛼+2
2

𝐷∗ −𝐷
−
8(𝑔𝑧

true𝛽𝐵)2𝛼0
2

𝐷∗ + 𝐷
= 𝑔𝑧

eff𝛽𝐵 

3𝐸2𝑔𝑧
eff𝛽𝐵 = 6(𝐷∗ − 𝐷)𝐸2 + 8[(𝐷∗ + 𝐷)𝛼+2

2 − (𝐷∗ − 𝐷)𝛼0
2](𝑔𝑧

true𝛽𝐵)2. 

Both equations (S24a) and (S24b) do not have the field-independent general and special 

solutions in the range of 0 ≦ λ ≦ 1/3, exemplifying a trivial case of 𝑔𝑧
true = 0.  

  

(S24a) 

(S24b) 

(S22a) 

(S22b) 

(S22c) 

(S22d) 

(S23d) 

(S23e) 

(S23a) 

(S23b) 

(S23c) 

(S22e) 
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The transition probability between the |MS = ±1>-dominant states P±1 = |<Ψ–1|Sz|Ψ+1>|2 is 

[⟨−1| −
𝑔𝑧
true𝛽𝐵

6𝐸
⟨+1|] 𝑆𝑧 [|+1⟩ +

𝑔𝑧
true𝛽𝐵

6𝐸
|−1⟩] 

= [⟨−1| −
𝑔𝑧
true𝛽𝐵

6𝐸
⟨+1|] [|+1⟩ −

𝑔𝑧
true𝛽𝐵

6𝐸
|−1⟩] 

= −
𝑔𝑧
true𝛽𝐵

3𝐸
 

𝑃±1(𝐵, 𝐸) =
(𝑔𝑧
true𝛽𝐵)2

9𝐸2
 

Obviously, P > 1 if gz
trueβB > 3E. 

  



S21 

 

3.3 Global permutation for the ZFS energies in the case of S = 2 

As seen in the quartet state, 𝐷∗ = √𝐷2 + 3𝐸2 does not change for the permutation of the 

subscripts in Dxx, Dyy and Dzz in the spin Hamiltonian. Therefore, 𝜀+2
(0)

 and 𝜀0
(0)

 fulfil the 

global permutation rule. However, for the other ZFS energies, within the set of {𝜀+1
(0)

, 𝜀−1
(0)

, 

𝜀−2
(0)

}  

𝜀+1
(0) = −𝐷 + 3𝐸

𝐁∥𝑥
→ −

1

2
(3𝐸 − 𝐷) + 3 [−

1

2
(𝐸 + 𝐷)] 

= −𝐷 − 3𝐸 = 𝜀−1
(0)

 

𝜀+1
(0) = −𝐷 + 3𝐸

𝐁∥𝑦
→ − [−

1

2
(3𝐸 + 𝐷)] + 3 [

1

2
(𝐸 − 𝐷)] 

= −𝐷+ 3𝐸 = 𝜀+1
(0) 

 

𝜀−1
(0) = −𝐷 − 3𝐸

𝐁∥𝑥
→ −

1

2
(3𝐸 − 𝐷) − 3 [−

1

2
(𝐸 + 𝐷)] 

= 2𝐷 = 𝜀−2
(0)

 

𝜀−1
(0) = −𝐷 − 3𝐸

𝐁∥𝑦
→ − [−

1

2
(3𝐸 + 𝐷)] − 3 [

1

2
(𝐸 − 𝐷)] 

= 2𝐷 = 𝜀−2
(0) 

 

𝜀−2
(0) = 2𝐷

𝐁∥𝑥
→ 2 [

1

2
(3𝐸 − 𝐷)] = −𝐷 + 3𝐸 = 𝜀+1

(0)
 

𝜀−2
(0)
= 2𝐷

𝐁∥𝑦
→ 2 [−

1

2
(3𝐸 + 𝐷)] = −𝐷 − 3𝐸 = 𝜀−1

(0)
 

The interchange of the energies belonging to the MS-dominant sublevels occurs.  
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4. Analytical formulas for spin-sextet states 

4.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-sextet states (S = 

5/2) 

The matrix representation of ZFS and electron-Zeeman Hamiltonian in the case of spin sextet 

states with B//z is given as follows:  

𝐻ZFS+eZ
sextet =

(

 
 
 
 

10

3
𝐷 +

5

2
𝑔𝑧
true𝛽𝐵

0

√10𝐸
0
0
0

0

−
2

3
𝐷 +

3

2
𝑔𝑧
true𝛽𝐵

0

3√2𝐸
0
0

√10𝐸
0

−
8

3
𝐷 +

1

2
𝑔𝑧
true𝛽𝐵

0

3√2𝐸
0

0

3√2𝐸
0

−
8

3
𝐷 −

1

2
𝑔𝑧
true𝛽𝐵

0

√10𝐸

0
0

3√2𝐸
0

−
2

3
𝐷 −

3

2
𝑔𝑧
true𝛽𝐵

0

0
0
0

√10𝐸
0

10

3
𝐷 −

5

2
𝑔𝑧
true𝛽𝐵

)

 
 
 
 

 

This matrix can be divided into two conjugate matrixes whose basis sets are {|+5/2>, |–3/2>, 

|+1/2>} and {|–5/2>, |+3/2>, |–1/2>}, respectively. The former is represented as 

 

𝐻ZFS+eZ,1
sextet =

(

 
 
 

10

3
𝐷 +

5

2
𝑔𝑧
true𝛽𝐵 0 √10𝐸

0 −
2

3
𝐷 −

3

2
𝑔𝑧
true𝛽𝐵 3√2𝐸

√10𝐸 3√2𝐸 −
8

3
𝐷 +

1

2
𝑔𝑧
true𝛽𝐵)

 
 
 

 

In order to obtain the eigenenergies and eigenfunctions, we solve the corresponding secular 

equation as follows;  

𝑥3 −
3

2
𝑔𝑧
true𝛽𝐵𝑥2 − [

28

3
𝐷2 + 28𝐸2 + 8𝐷𝑔𝑧

true𝛽𝐵 +
13

4
(𝑔𝑧
true𝛽𝐵)2] 𝑥 −

160

27
𝐷3

+
160

3
𝐷𝐸2 −

50

3
𝐷2𝑔𝑧

true𝛽𝐵 + 30𝐸2𝑔𝑧
true𝛽𝐵 −

20

3
𝐷(𝑔𝑧

true𝛽𝐵)2

+
15

8
(𝑔𝑧
true𝛽𝐵)3 = 0. 

In order to eliminate the x2 term, replacing x with x + gz
trueβB/2 yields 

𝑥3 = [
28

3
𝐷2 + 28𝐸2 + 8𝐷𝑔𝑧

true𝛽𝐵 + 4(𝑔𝑧
true𝛽𝐵)2] 𝑥 +

160

27
𝐷3 −

160

3
𝐷𝐸2

+
64

3
𝐷2𝑔𝑧

true𝛽𝐵 − 16𝐸2𝑔𝑧
true𝛽𝐵 +

32

3
𝐷(𝑔𝑧

true𝛽𝐵)2. 

According to the Viete’s method, the set of the three eigenenergies are given as 

𝐸𝑛 = 2𝑎 cos [
1

3
arccos (

𝑏

2𝑎
) +

2𝑛𝜋

3
] +

1

2
𝑔𝑧
true𝛽𝐵 

Ψ𝑛 = 𝛼𝑛 |+
5

2
⟩ + 𝛽𝑛 |−

3

2
⟩ + 𝛾𝑛 |+

1

2
⟩ 

where 

𝑎 =
2

3
√7𝐷2 + 21𝐸2 + 6𝐷𝑔𝑧

true𝛽𝐵 + 3(𝑔𝑧
true𝛽𝐵)2 

<+5/2| <–3/2| <+1/2| 

|+5/2> 

|–3/2> 

|+1/2> 

(S25) 

(S26) 
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𝑏 =
40(𝐷3 − 90𝐷𝐸2) + 36(4𝐷2 − 3𝐸2)𝑔𝑧

true𝛽𝐵 + 72𝐷(𝑔𝑧
true𝛽𝐵)2

7(𝐷2 + 3𝐸2) + 18𝐷𝑔𝑧
true𝛽𝐵 + 9(𝑔𝑧

true𝛽𝐵)2
 

𝛼𝑛
𝛾𝑛
=

√10𝐸

𝐸𝑛 −
10
3 𝐷 −

5
2𝑔𝑧

true𝛽𝐵
 

𝛽𝑛
𝛾𝑛
=

3√2𝐸

𝐸𝑛 +
2
3𝐷 +

3
2𝑔𝑧

true𝛽𝐵
 

𝛾𝑛
2 = [(

𝛼𝑛
𝛾𝑛
)
2

+ (
𝛽𝑛
𝛾𝑛
)
2

+ 1]

−1

 

and n = 0, 1, 2 correspond to the |MS = +5/2>, |+1/2> and |–3/2> dominant state, respectively. 

The counterpart eigenvalues and eigenfunctions in the basis of {|–5/2>, |+3/2>, |–1/2>} can be 

obtained with substituting B to –B. The analytical formulas given above are explicitly derived 

for the first time together with those for S = 7/2 as given later in this work. The gz
eff-gz

true 

relationships as a function of λ = E/D are only numerically obtained with equalizing EMs – E–Ms 

to gz
effβB, as Figure S6 given below. 

 

 

Figure S6 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts, x, y and z 

denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the broken lines 

are based on the exact solutions with the spin Hamiltonian parameters as follows: gtrueβB/D = 0.3. Those 

derived by the genuine Zeeman perturbation treatment to the second order are depicted in the solid curves 

based on Equations (S31a)–(S31c). 
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4.2 The geff-gtrue relationships by using of the genuine Zeeman perturbation approach in 

the case of spin-sextet states (S = 5/2) 

The ZFS Hamiltonian in spin-sextet states can be divided to two equivalent 3 × 3 matrices 

whose conjugate basis sets are {|+5/2>, |–3/2>, |+1/2>} and {|–5/2>, |+3/2>, |–1/2>}, 

respectively. 

𝐻ZFS
sextet =

(

 
 
 

10

3
𝐷 0 √10𝐸

0 −
2

3
𝐷 3√2𝐸

√10𝐸 3√2𝐸 −
8

3
𝐷)

 
 
 

 

In order to obtain the eigenenergies of the ZFS matrix, we solve the secular equation. 

𝑥3 =
28

3
(𝐷2 + 3𝐸2)𝑥 +

160

27
(𝐷3 − 9𝐷𝐸2) 

The three eigenenergies and three eigenfunctions are 

𝜀𝑛
(0) = 2𝑎 cos [

1

3
arccos (

𝑏

2𝑎
) +

2𝑛𝜋

3
] 

𝜑𝑛
(0) = 𝛼𝑛 |+

5

2
⟩ + 𝛽𝑛 |−

3

2
⟩ + 𝛾𝑛 |+

1

2
⟩ 

where 

𝑎 =
2√7(𝐷2 + 3𝐸2)

3
=
2𝐷√7(1 + 3𝜆2)

3
 

𝑏 =
40(𝐷3 − 9𝐷𝐸2)

21(𝐷2 + 3𝐸2)
=
40𝐷(1 − 9𝜆2)

21(1 + 3𝜆2)
 

𝛼𝑛
𝛾𝑛
=

√10𝐸

𝜀𝑛
(0) −

10
3 𝐷

 

𝛽𝑛
𝛾𝑛
=

3√2𝐸

𝜀𝑛
(0) +

2
3𝐷

 

𝛾𝑛
2 = [

10𝐸2

(𝜀𝑛
(0) −

10
3 𝐷)

2 +
18𝐸2

(𝜀𝑛
(0) +

2
3𝐷)

2 + 1]

−1

 

(𝑛 = 0, 1, 2). 

Here, n = 0, 1 and 2 corresponds to the |MS = ±5/2>, |±1/2> and |±3/2>-dominant states, 

respectively. The perturbing Hamiltonian in the basis of {|+5/2>, |–3/2>, |+1/2>} with B//z is 

(S27) 

(S28) 
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𝐻′eZ
sextet = 𝑔𝑧

true𝛽𝐵

(

 
 
 

5

2
𝛼0
2 −

3

2
𝛽0
2 +

1

2
𝛾0
2

5

2
𝛼0𝛼2 −

3

2
𝛽0𝛽2 +

1

2
𝛾0𝛾2

5

2
𝛼0𝛼1 −

3

2
𝛽0𝛽1 +

1

2
𝛾0𝛾1

5

2
𝛼0𝛼2 −

3

2
𝛽0𝛽2 +

1

2
𝛾0𝛾2

5

2
𝛼2
2 −

3

2
𝛽2
2 +

1

2
𝛾2
2

5

2
𝛼1𝛼2 −

3

2
𝛽1𝛽2 +

1

2
𝛾1𝛾2

5

2
𝛼0𝛼1 −

3

2
𝛽0𝛽1 +

1

2
𝛾0𝛾1

5

2
𝛼1𝛼2 −

3

2
𝛽1𝛽2 +

1

2
𝛾1𝛾2

5

2
𝛼1
2 −

3

2
𝛽1
2 +

1

2
𝛾1
2
)

 
 
 

 

The conjugate Hamiltonian in the corresponding basis of {|–5/2>, |+3/2>, |–1/2>} can be 

obtained by replacing B with –B. The perturbed energies to the second order are 

𝐸
+
5
2

′ = 𝜀0
(0)
+ (
5

2
𝛼0
2 −

3

2
𝛽0
2 +

1

2
𝛾0
2) 𝑔𝑧

true𝛽𝐵 +
(5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀0
(0)
− 𝜀2

(0)

+
(5
2
𝛼0𝛼1 −

3
2
𝛽0𝛽1 +

1
2
𝛾0𝛾1)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀0
(0)
− 𝜀1

(0)
 

𝐸
−
3
2

′ = 𝜀2
(0)
+ (
5

2
𝛼2
2 −

3

2
𝛽2
2 +

1

2
𝛾2
2) 𝑔𝑧

true𝛽𝐵 +
(5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀2
(0)
− 𝜀0

(0)

+
(5
2
𝛼1𝛼2 −

3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀2
(0)
− 𝜀1

(0)
 

𝐸
+
1
2

′ = 𝜀1
(0)
+ (
5

2
𝛼1
2 −

3

2
𝛽1
2 +

1

2
𝛾1
2) 𝑔𝑧

true𝛽𝐵 +
(5
2
𝛼0𝛼1 −

3
2
𝛽0𝛽1 +

1
2
𝛾0𝛾1)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀1
(0)
− 𝜀0

(0)

+
(5
2
𝛼1𝛼2 −

3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2)

2
(𝑔𝑧
true𝛽𝐵)2

𝜀1
(0)
− 𝜀2

(0)
 

and the perturbed spin functions to the first order are 

Ψ
+
5
2

′ =
1

𝑁0
[𝛼0 |+

5

2
⟩ + (𝛽0 +

5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2

𝜀0
(0)
− 𝜀2

(0)
𝑔𝑧
true𝛽𝐵) |−

3

2
⟩ + (𝛾0 +

5
2
𝛼0𝛼1 −

3
2
𝛽0𝛽1 +

1
2
𝛾0𝛾1

𝜀0
(0)
− 𝜀1

(0)
𝑔𝑧
true𝛽𝐵) |+

1

2
⟩] 

Ψ
−
3
2

′ =
1

𝑁2
[(𝛼2 +

5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2

𝜀2
(0)
− 𝜀0

(0)
𝑔𝑧
true𝛽𝐵) |+

5

2
⟩ + 𝛽2 |−

3

2
⟩ + (𝛾2 +

5
2
𝛼1𝛼2 −

3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2

𝜀2
(0)
− 𝜀1

(0)
𝑔𝑧
true𝛽𝐵) |+

1

2
⟩] 

Ψ
+
1
2

′ =
1

𝑁1
[(𝛼1 +

5
2
𝛼0𝛼1 −

3
2
𝛽0𝛽1 +

1
2
𝛾0𝛾1

𝜀1
(0)
− 𝜀0

(0)
𝑔𝑧
true𝛽𝐵) |+

5

2
⟩ + (𝛽1 +

5
2
𝛼1𝛼2 −

3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2

𝜀1
(0)
− 𝜀2

(0)
𝑔𝑧
true𝛽𝐵) |−

3

2
⟩ + 𝛾1 |+

1

2
⟩] 

Ψ
−
5
2

′ =
1

𝑁0
′ [𝛼0 |−

5

2
⟩ + (𝛽0 −

5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2

𝜀0
(0)
− 𝜀2

(0)
𝑔𝑧
true𝛽𝐵) |+

3

2
⟩ + (𝛾0 −

5
2
𝛼0𝛼1 −

3
2
𝛽0𝛽1 +

1
2
𝛾0𝛾1

𝜀0
(0)
− 𝜀1

(0)
𝑔𝑧
true𝛽𝐵) |−

1

2
⟩] 

Ψ
+
3
2

′ =
1

𝑁2
′ [(𝛼2 −

5
2
𝛼0𝛼2 −

3
2
𝛽0𝛽2 +

1
2
𝛾0𝛾2

𝜀2
(0)
− 𝜀0

(0)
𝑔𝑧
true𝛽𝐵) |−

5

2
⟩ + 𝛽2 |+

3

2
⟩ + (𝛾2 −

5
2
𝛼1𝛼2 −

3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2

𝜀2
(0)
− 𝜀1

(0)
𝑔𝑧
true𝛽𝐵) |−

1

2
⟩] 

Ψ
−
1
2

′ =
1

𝑁1
′ [(𝛼1 −

5
2
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3
2
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1
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5
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5
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3
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− 𝜀2

(0)
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true𝛽𝐵) |+

3

2
⟩ + 𝛾1 |−

1

2
⟩] 

where N0, N0’, N1, N1’, N2 and N2’ are the normalization factors. Notice that the zeroth and the 

contributions of the second-order energies vanish when the energy differences between ±MS, 

E’Ms – E’–Ms, are taken. Thus, the gz
eff-gz

true relationships as a function of λ = E/D are;  

(S29a) 

(S29b) 

(S29c) 

(S30a) 

(S30c) 

(S30e) 

(S30b) 

(S30d) 

(S30f) 
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𝑔𝑧
eff

𝑔𝑧
true

=

50𝜆2

(𝜀0
′(0) − 10

3
)
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54𝜆2
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3
)
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10𝜆2

(𝜀0
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3
)
2 +
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(𝜀0
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3
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2 + 1

 

for the |MS = ±5/2> dominant transition, 

𝑔𝑧
eff

𝑔𝑧
true

=
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(𝜀2
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3
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3
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10𝜆2
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3
)
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(𝜀2
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3
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for the |MS = ±3/2> dominant transition, and 

𝑔𝑧
eff

𝑔𝑧
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=
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3
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54𝜆2

(𝜀1
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3
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(𝜀1
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3
)
2 +

18𝜆2

(𝜀1
′(0) + 2

3
)
2 + 1

 

for the |MS = ±1/2> dominant transition. 

The transition probabilities between ±MS are functions of λ = E/D and B. Similar to the case 

of the quartet state, here we consider only the group-theoretic quantum transition probabilities 

described as |<Ψ’–Ms|Sx|Ψ’+Ms>|2. For the |MS = ±5/2>-dominant transition, 

⟨Ψ
−
5
2

′
|𝑆𝑥|Ψ+

5
2

′
⟩ =

1

𝑁0
′

1

𝑁0
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3

2
𝛾0
2
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3
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1
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5
2
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3
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1
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)
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−
3

2
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2
𝛼0𝛼1 −

3
2
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1
2
𝛾0𝛾1)

2

(𝜀0
(0)
− 𝜀1

(0)
)
2

(𝑔𝑧
true𝛽𝐵)2]. 

For the |MS = ±3/2> transition, 

⟨Ψ
+3
2

′
|𝑆𝑥|Ψ−3

2

′
⟩ =

1

𝑁2
′

1
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3

2
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3

2
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2
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3
2
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1
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𝛾1𝛾2)

2

(𝜀2
(0)
− 𝜀1

(0)
)
2

(𝑔𝑧
true𝛽𝐵)2] 

For the |MS = ±1/2> transition, 

⟨Ψ
−1
2

′
|𝑆𝑥|Ψ+1

2

′
⟩ =

1

𝑁1
′

1

𝑁1
[√5𝛼1𝛽1 + 2√2𝛽1𝛾1 +

3

2
𝛾2
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(5
2
𝛼0𝛼1 −

3
2
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1
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𝛾0𝛾1)(

5
2
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3
2
𝛽1𝛽2 +

1
2
𝛾1𝛾2)

(𝜀1
(0)
− 𝜀0

(0)
) (𝜀1

(0)
− 𝜀2

(0)
)

(𝑔𝑧
true𝛽𝐵)2] 

 

(S31a) 

(S31b) 
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Figure S7 The transition probabilities |<Ψ’–Ms|Sx|Ψ’+Ms>|2 for S = 5/2. The subscripts x, y and z denote the 

principal axes of the g- and ZFS tensors. The curves are based on the exact solutions with the spin 

Hamiltonian parameters with gtrueβB/D = 0.1. Those derived by the genuine Zeeman perturbation treatment 

to the third order are depicted in the solid curves. 

 

The energy corrections to the third order, εn
(3) (n = 0,1,2) are given in the following:  

For the |MS = +5/2> dominant state, 

𝜀0
(3)

=
(5𝛼0𝛼1 − 3𝛽0𝛽1 + 𝛾0𝛾1)

2(5𝛼1
2 − 5𝛼0

2 − 3𝛽1
2 + 3𝛽0

2 + 𝛾1
2 − 𝛾0

2)

8 (𝜀0
(0) − 𝜀1

(0)
)
2

(𝑔𝑧
true𝛽𝐵)3

+
(5𝛼0𝛼2 − 3𝛽0𝛽2 + 𝛾0𝛾2)(5𝛼1𝛼2 − 3𝛽1𝛽2 + 𝛾1𝛾2)(5𝛼0𝛼1 − 3𝛽0𝛽1 + 𝛾0𝛾1)

4 (𝜀0
(0) − 𝜀2

(0)
) (𝜀0

(0) − 𝜀1
(0)
)

(𝑔𝑧
true𝛽𝐵)3

+
(5𝛼0𝛼2 − 3𝛽0𝛽2 + 𝛾0𝛾2)

2(5𝛼2
2 − 5𝛼0

2 − 3𝛽2
2 + 3𝛽0

2 + 𝛾2
2 − 𝛾0
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=

[
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(0)
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2

[
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3
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−

50𝐸2

(𝜀0
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3
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]
 
 
 
 
 

×
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(0) − 𝜀1
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2
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3
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×
(𝑔𝑧
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(0) − 𝜀2

(0))
2
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(𝜀0
(0) + 2

3
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×

[
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; 

For the |MS = –3/2> dominant state,  

𝜀2
(3)

=
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2(5𝛼0
2 − 5𝛼2
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8 (𝜀2
(0) − 𝜀0
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true𝛽𝐵)3

+
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true𝛽𝐵)3 

(S32a) 



S29 

 

=

[
50𝐸2

(𝜀2
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3
𝐷)(𝜀0
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2 − 𝛾1

2)

8 (𝜀2
(0) − 𝜀1

(0)
)
2

(𝑔𝑧
true𝛽𝐵)3 

(S32b) 



S30 

 

=

[
50𝐸2

(𝜀1
(0) − 10

3
𝐷)(𝜀0

(0) − 10
3
𝐷)
−

54𝐸2

(𝜀1
(0) + 2

3
𝐷)(𝜀0

(0) + 2
3
𝐷)
+ 1]

2

[
10𝐸2

(𝜀1
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀1
(0) + 2

3
𝐷)
2 + 1] [

10𝐸2

(𝜀0
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀0
(0) + 2

3
𝐷)
2 + 1]

×

[
 
 
 
 

50𝐸2

(𝜀0
(0) − 10

3
𝐷)
2 −

54𝐸2

(𝜀0
(0) + 2

3
𝐷)
2 + 1

10𝐸2

(𝜀0
(0) − 10

3 𝐷)
2 +

18𝐸2

(𝜀0
(0) + 2

3𝐷)
2 + 1

−

50𝐸2

(𝜀1
(0) − 10

3
𝐷)
2 −

54𝐸2

(𝜀1
(0) + 2

3
𝐷)
2 + 1

10𝐸2

(𝜀1
(0) − 10

3 𝐷)
2 +

18𝐸2

(𝜀1
(0) + 2

3𝐷)
2 + 1

]
 
 
 
 

×
(𝑔𝑧
true𝛽𝐵)3

8(𝜀1
(0) − 𝜀0

(0)
)
2

+

[
50𝐸2

(𝜀1
(0) − 10

3
𝐷)(𝜀2

(0) − 10
3
𝐷)
−

54𝐸2

(𝜀1
(0) + 2

3
𝐷)(𝜀2

(0) + 2
3
𝐷)
+ 1]

2

[
10𝐸2

(𝜀2
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀2
(0) + 2

3
𝐷)
2 + 1] [

10𝐸2

(𝜀1
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀1
(0) + 2

3
𝐷)
2 + 1]

×

[
 
 
 
 

50𝐸2

(𝜀2
(0) − 10

3 𝐷)
2 −

54𝐸2

(𝜀2
(0) + 2

3𝐷)
2 + 1

10𝐸2

(𝜀2
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀2
(0) + 2

3
𝐷)
2 + 1

−

50𝐸2

(𝜀1
(0) − 10

3 𝐷)
2 −

54𝐸2

(𝜀1
(0) + 2

3𝐷)
2 + 1

10𝐸2

(𝜀1
(0) − 10

3
𝐷)
2 +

18𝐸2

(𝜀1
(0) + 2

3
𝐷)
2 + 1

]
 
 
 
 

×
(𝑔𝑧
true𝛽𝐵)3

8(𝜀1
(0) − 𝜀2

(0)
)
2

+

[
50𝐸2

(𝜀1
(0) − 10

3 𝐷)(𝜀2
(0) − 10

3 𝐷)
−

54𝐸2

(𝜀1
(0) + 2

3𝐷)(𝜀2
(0) + 2

3𝐷)
+ 1]

[
10𝐸2

(𝜀0
(0) − 10

3 𝐷)
2 +

18𝐸2

(𝜀0
(0) + 2

3𝐷)
2 + 1]

×

[
50𝐸2

(𝜀0
(0) − 10

3 𝐷)(𝜀2
(0) − 10

3 𝐷)
−

54𝐸2

(𝜀0
(0) + 2

3𝐷)(𝜀2
(0) + 2

3𝐷)
+ 1]

[
10𝐸2

(𝜀1
(0) − 10

3 𝐷)
2 +

18𝐸2

(𝜀1
(0) + 2

3𝐷)
2 + 1]

×

[
50𝐸2

(𝜀0
(0) − 10

3 𝐷)(𝜀1
(0) − 10

3 𝐷)
−

54𝐸2

(𝜀0
(0) + 2

3𝐷)(𝜀1
(0) + 2

3𝐷)
+ 1]

[
10𝐸2

(𝜀2
(0) − 10

3 𝐷)
2 +

18𝐸2

(𝜀2
(0) + 2

3𝐷)
2 + 1]

×
(𝑔𝑧
true𝛽𝐵)3

4(𝜀1
(0) − 𝜀0

(0)
)(𝜀1

(0) − 𝜀2
(0)
)
. 

The third order energies corresponding to the |MS = –5/2>, |+3/2> and |–1/2> dominant states 

are obtained with replacing B with –B in the energy equations for the conjugate |MS = +5/2>, |–

3/2> and |+1/2>-dominant states, respectively. The geff-gtrue relationships are obtained from the 

equation E’Ms – E’–Ms = geffβB where E’±Ms is the energy to the third order. Figure S8 depicts 

geff/gtrue as a function of the ratios of |E/D| for S = 5/2, as derived from the genuine Zeeman 

perturbation treatment to the third order and exact solutions for a particular set of the spin 

Hamiltonian parameters given in the caption. 

 

 

|MS = ±5/2> 

x, y 

z 
x 

y 

(S32c) 
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Figure S8 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts x, y and z 

denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the broken lines 

are based on the exact solutions of the spin Hamiltonian parameters with gz
trueβB/D = 0.3. Those derived by 

the genuine Zeeman perturbation treatment to the third order are depicted in the solid curves. 
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4.3 Global permutation rules for the ZFS energy in the case of S = 5/2 

As seen above, the physical quantity of D2 + 3E2 does not change with the permutation of 

the subscripts and thus the term a in the expressions for the trigonometric eigenenergy of the 

ZFS Hamiltonian preserves in the permutation. For the term b, 

𝐷3 − 9𝐷𝐸2 

𝑩∥𝑥
→  [

1

2
(3𝐸 − 𝐷)]

3

− 9 [
1

2
(3𝐸 − 𝐷)] [−

1

2
(𝐸 + 𝐷)]

2

= 𝐷3 − 9𝐷𝐸2, 

𝐷3 − 9𝐷𝐸2 

𝑩∥𝑦
→  [−

1

2
(3𝐸 + 𝐷)]

3

− 9 [−
1

2
(3𝐸 + 𝐷)] [

1

2
(𝐸 − 𝐷)]

2

= 𝐷3 − 9𝐷𝐸2. 

Therefore, the term b meets the global permutation rules and thus the set of eigenenergy does. 
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4.4 Derivation of approximate geff-gtrue relationships in the spin-sextet case (S = 5/2) 

As mentioned in the text, the diagonalized (exact) eigenenergies of the Hamiltonian with 

electron-Zeeman and ZFS terms are expressed in terms of trigonometric functions as a function 

of λ = E/D and B. In order to explicitly describe the geff-gtrue relationships as a function of λ = 

E/D, as given in the case of the genuine Zeeman perturbation treatment, we are allowed to 

exploit a series of the expansion of arccosine and cosine at a desired order of the expansion, 

exemplifying to the first order in the following.  

arccos 𝑥 ≈
𝜋

2
− 𝑥 

cos [
1

3
arccos 𝑥] ≈ cos [

1

3
(
𝜋

2
− 𝑥)] ≈

√3

2
+
1

6
𝑥 −

1

12√3
𝑥2 

cos [
1

3
arccos 𝑥 +

2𝜋

3
] ≈ cos [

1

3
(
𝜋

2
− 𝑥) +

2𝜋

3
] ≈ −

√3

2
+
1

6
𝑥 +

1

12√3
𝑥2 

cos [
1

3
arccos 𝑥 +

4𝜋

3
] ≈ cos [

1

3
(
𝜋

2
− 𝑥) +

4𝜋

3
] ≈ −

1

3
𝑥 

𝐸"
+
5
2
= 2𝑎1 cos [

1

3
arccos

𝑏1
2𝑎1
] +

𝑔𝑧
true𝛽𝐵

2
≈ 2𝑎1 [

√3

2
+
1

6

𝑏1
2𝑎1

−
1

12√3
(
𝑏1
2𝑎1
)
2

] +
𝑔𝑧
true𝛽𝐵

2
 

𝐸"
+
1
2
= 2𝑎1 cos [

1

3
arccos

𝑏1
2𝑎1

+
2𝜋

3
] +

𝑔𝑧
true𝛽𝐵

2

≈ 2𝑎1 [−
√3

2
+
1

6

𝑏1
2𝑎1

+
1

12√3
(
𝑏1
2𝑎1
)
2

] +
𝑔𝑧
true𝛽𝐵

2
 

𝐸"
−
3
2
= 2𝑎1 cos [

1

3
arccos

𝑏1
2𝑎1

+
4𝜋

3
] +

𝑔𝑧
true𝛽𝐵

2
≈ 2𝑎1 [−

1

3

𝑏1
2𝑎1
] +
𝑔𝑧
true𝛽𝐵

2
 

where 

𝑎1 =
2

3
√7(𝐷2 + 3𝐸2) + 6𝐷𝑔𝑧

true𝛽𝐵 + 3(𝑔𝑧
true𝛽𝐵)2 

𝑏1 =
40(𝐷3 − 9𝐷𝐸2) + 144𝐷2𝑔𝑧

true𝛽𝐵 − 108𝐸2𝑔𝑧
true𝛽𝐵 + 72𝐷(𝑔𝑧

true𝛽𝐵)2

21(𝐷2 + 3𝐸2) + 18𝐷𝑔𝑧
true𝛽𝐵 + 9(𝑔𝑧

true𝛽𝐵)2
. 

Notice that the equations above are equivalent to those in the main text (Equations (6a)–(6c)). 

The other eigenvalues corresponding to the conjugate spin states {E–5/2, E+3/2, E–1/2} are derived 

by replacing B with –B. Figure S9 compares the exact and approximate energies. The energy 

difference between the conjugate spin state is equated to gz
effβB, i.e. E+Ms – E–Ms = gz

effβB, 

yielding identities with respect to B. In order to explicitly obtain the formula of gz
eff/gz

true, we 

exemplify the transition between the |MS = ±5/2>-dominant states. Both sides of the equation 

are multiplied by a1
5 and a2

5 (a2 is obtained with replacing B with –B in a1) to eliminate B from 

the denominators. 

𝑎1
5𝑎2

5 (𝐸"+5
2
− 𝐸"−5

2
) = 𝑎1

5𝑎2
5𝑔𝑧
eff𝛽𝐵 
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Figure S9 The energy diagrams of the exact (red) and approximate (green) eigenenergies of each MS-

dominant state for λ = 0, 0.1, 0.2 and 0.3, respectively. Since b1/2a1 in arccosine is a monotonically decreasing 

function of λ, the approximate values become close to the exact ones. 

 

Then, we separate the group of terms with only the even indices from those with only the 

odd indices of a1 and a2 and transpose the former terms to the opposite side of the equation. 

Squaring the equation yields identities with respect to B. The comparison of the coefficients 

with respect to the same order of B provides the quadratic or quartic equations, acquiring the 

geff-gtrue relationships as a function of λ = E/D. For example, the coefficient of the B2 term gives 

a quadratic equation with respect to geff (or gtrue); 

−
92236816

6561
(1 + 3𝜆2)8(3037 + 28683𝜆2 + 79299𝜆4 + 83349𝜆6)2

× [22235661𝑔𝑧
eff2(1 + 3𝜆2)7

− 3025226𝑔𝑧
true𝑔𝑧

eff(1 + 3𝜆2)5(403 + 2358𝜆2 + 567𝜆4)

+ 𝑔𝑧
eff2(67358717 + 1146273129𝜆2 + 5104268649𝜆4 − 3003959115𝜆6

− 56486583225𝜆8 − 15603560469𝜆10 + 12809086227𝜆12

+ 8931928887𝜆14)] = 0. 

One of the solutions, which is too long and complicated to write, gives the geff-gtrue relationships 

as a function of λ = E/D. An expansion procedure similar to the above is applicable to eigenfield 

solutions, and the analytical expressions for geff-gtrue relationships are all lengthy. There is no 

significant advantage to exploit expansion approaches compared with the genuine Zeeman 

perturbation treatment. 
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Figure S10 The gz
eff/gz

true relationships as a function of the ratios of |E/D| between the |MS = ±5/2>-dominant 

sublevels in terms of the three different derivations. The blue solid line was from the genuine Zeeman 

perturbation approach, blue broken line denotes the numerical calculation using exact eigenenergies 

(Equation (S25) and its counterpart) with gz
trueβB = 0.1, purple broken line denotes the numerical calculation 

using E”+5/2 – E”–5/2 = gz
trueβB with gz

trueβB = 0.1, and the curve denoted by the cyan solid line was obtained 

by solving the quadratic equation (S33). The discrepancy between the cyan and purple lines is due to the 

ignorance of the higher-order of series expansion of arccosine and cosine. 
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5. Analytical formulas for spin-septet states 

5.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-septet states (S = 

3) 

The matrix representation of the ZFS and electron-Zeeman Hamiltonian (B//z) in the case of 

spin septet states is 

𝐻ZFS+eZ
septet

= 

<+3| <+2| <+1| <0| <–1| <–2| <–3|  

5𝐷

+ 3𝑔𝑧
true𝛽𝐵 

0 √15𝐸 0 0 0 0 |+3> 

0 2𝑔𝑧
true𝛽𝐵 0 √30𝐸 0 0 0 |+2> 

√15𝐸 0 
−3𝐷

+ 𝑔𝑧
true𝛽𝐵 

0 6𝐸 0 0 |+1> 

0 √30𝐸 0 −4𝐷 0 √30𝐸 0 |0> 

0 0 6𝐸 0 
−3𝐷

− 𝑔𝑧
true𝛽𝐵 

0 √15𝐸 |–1> 

0 0 0 √30𝐸 0 −2𝑔𝑧
true𝛽𝐵 0 |–2> 

0 0 0 0 √15𝐸 0 
5𝐷

− 3𝑔𝑧
true𝛽𝐵 

|–3> 

This Hamiltonian can be divided into two matrixes 𝐻ZFS+eZ,1
septet

 and 𝐻ZFS+eZ,2
septet

 whose basis sets 

are {|+3>, |+1>, |–1>, |–3>} and {|+2>, |0>, |–2>}, respectively. 

 

𝐻ZFS+eZ,1
septet

= (

5𝐷 + 3𝑔𝑧
true𝛽𝐵

√15𝐸
0
0

√15𝐸
−3𝐷 + 𝑔𝑧

true𝛽𝐵
6𝐸
0

0
6𝐸

−3𝐷 − 𝑔𝑧
true𝛽𝐵

√15𝐸

0
0

√15𝐸
5𝐷 − 3𝑔𝑧

true𝛽𝐵

) 

 

𝐻ZFS+Zeeman,2
septet

= (

2𝑔𝑧
true𝛽𝐵 √30𝐸 0

√30𝐸 −4𝐷 √30𝐸

0 √30𝐸 −2𝑔𝑧
true𝛽𝐵

) 

Let us first consider the eigenvalues of 𝐻ZFS+eZ,1
septet

. The corresponding secular equation is 

𝑥4 − 4𝐷𝑥3 − [26𝐷2 + 66𝐸2 + 10(𝑔𝑧
true𝛽𝐵)2]𝑥2 + [60𝐷3 + 420𝐷𝐸2 − 44𝐷(𝑔𝑧

true𝛽𝐵)2]𝑥

+ 225𝐷4 − 450𝐷2𝐸2 − 106𝐷2(𝑔𝑧
true𝛽𝐵)2 + 225𝐸4 + 234𝐸2(𝑔𝑧

true𝛽𝐵)2

+ 9(𝑔𝑧
true𝛽𝐵)4 = 0. 

Replacing x with x + D yields 

𝑥4 − [32𝐷2 + 66𝐸2 + 10𝐵2]𝑥2 + [288𝐷𝐸2 − 64𝐷(𝑔𝑧
true𝛽𝐵)2]𝑥 + 256𝐷4 − 96𝐷2𝐸2

− 160𝐷2(𝑔𝑧
true𝛽𝐵)2 + 225𝐸4 + 234𝐸2(𝑔𝑧

true𝛽𝐵)2 + 9(𝑔𝑧
true𝛽𝐵)4 = 0. 

<+2| <0| <-2| 

|+2> 

|0> 

|-2> 

<+3| <–1| 

|+3> 

|+1> 

|–3> 

<+1| <–3| 

|–1> 
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The resolvent cubic equation of this quartic equation is 

𝑠3 + 2𝑝𝑠2 + (𝑝2 − 4𝑟)𝑠 − 𝑞2 = 0. 

where 

𝑝 = −32𝐷2 − 66𝐸2 − 10(𝑔𝑧
true𝛽𝐵)2 

𝑞 = 288𝐷𝐸2 − 64𝐷(𝑔𝑧
true𝛽𝐵)2 

𝑟 = 256𝐷4 − 96𝐷2𝐸2 − 160𝐷2(𝑔𝑧
true𝛽𝐵)2 + 225𝐸4 + 234𝐸2(𝑔𝑧

true𝛽𝐵)2 + 9(𝑔𝑧
true𝛽𝐵)4. 

Replacing s with s – 2p/3, we obtain the following simplified cubic equation;  

𝑠3 =
1

3
(𝑝2 + 12𝑟)𝑠 +

1

27
(27𝑞2 + 2𝑝3 − 72𝑝𝑟). 

According to the Viete’s method, all the analytical solutions are obtained, and one of the 

solutions is 

𝑠0 = 2𝑎0 cos [
1

3
arccos (

𝑏0
2𝑎0
)] −

2𝑝

3
 

where 

𝑎0 =
√𝑝2 + 12𝑟

3
 

𝑏0 =
27𝑞2 + 2𝑝3 − 72𝑝𝑟

3𝑝2 + 36𝑟
. 

Then, the quartic equation can be rewritten as the product of two quadratic equations with s0 

{(𝑥2 +
𝑝 + 𝑠0
2

) + √𝑠0 (𝑥 −
𝑞

2𝑠0
)} {(𝑥2 +

𝑝 + 𝑠0
2

) − √𝑠0 (𝑥 −
𝑞

2𝑠0
)} = 0 

⇔

{
  
 

  
 
𝑥 =

1

2
[−√𝑠0 ±√−2𝑝 − 𝑠0 −

2𝑞

√𝑠0
]

𝑥 =
1

2
[√𝑠0 ±√−2𝑝 − 𝑠0 +

2𝑞

√𝑠0
] .

 

Therefore, the exact eigenenergies of the |MS = ±3>, |±1>-dominant states are 

𝐸+3 =
1

2
[2𝐷 + √𝑠0 +√−2𝑝 − 𝑠0 −

2𝑞

√𝑠0
] 

𝐸−3 =
1

2
[2𝐷 + √𝑠0 −√−2𝑝 − 𝑠0 −

2𝑞

√𝑠0
] 

𝐸+1 =
1

2
[2𝐷 − √𝑠0 +√−2𝑝 − 𝑠0 +

2𝑞

√𝑠0
] 

(S34a) 

(S34b) 

(S34c) 
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𝐸−1 =
1

2
[2𝐷 − √𝑠0 −√−2𝑝 − 𝑠0 +

2𝑞

√𝑠0
]. 

Next, we focus on the eigenenergies of 𝐻ZFS+eZ,2
septet

. The corresponding secular equation is 

cubic as follows;  

𝑦3 + 4𝐷𝑦2 − [60𝐸2 + 4(𝑔𝑧
true𝛽𝐵)2]𝑦 − 16𝐷𝐵2 = 0. 

In order to use the Viete’s solution, replacing y with y – 4D/3 yields 

𝑦3 = [
16

3
𝐷2 + 60𝐸2 + 4(𝑔𝑧

true𝛽𝐵)2] 𝑦 −
128

27
𝐷3 − 80𝐷𝐸2 +

32

3
𝐷(𝑔𝑧

true𝛽𝐵)2. 

Thus the eigenenergies in the trigonometric form are 

𝐸𝑛 = 2𝑎 cos [
1

3
arccos

𝑏

2𝑎
+
2𝑛𝜋

3
] −

4𝐷

3
 (𝑛 = 0, 1, 2) 

where 

𝑎 =
2

3
√2𝐷2 + 15𝐸2 + (𝑔𝑧

true𝛽𝐵)2 

𝑏 = −
32𝐷3 + 540𝐷𝐸2 − 72𝐷(𝑔𝑧

true𝛽𝐵)2

6𝐷2 + 45𝐸2 + 3(𝑔𝑧
true𝛽𝐵)2

 

and n = 0, 1 and 2 correspond to the |MS = +2>, |–2> and |0> dominant states, respectively. The 

geff-gtrue relationships as a function of λ = E/D between the ±MS-dominant states can be obtained 

from the equation EMs – E–Ms = geffβB. Considering this equation as identities with respect to B, 

we obtained the specific solutions gz
eff/gz

true = 6, 4 and 2, for the |MS = ±3>, |±2> and |±1>-

dominant transition, respectively, if and only if E/D = 0.  

  

(S34d) 

(S35) 



S39 

 

5.2 The geff-gtrue relationships by using of a genuine Zeeman perturbation approach in the 

case of spin-septet states (S = 3) 

The ZFS Hamiltonian in the spin-septet case can be prepared with B = 0 in the 𝐻ZFS+eZ
septet

 in 

the previous section. This Hamiltonian can be also divided into two matrixes, and the matrix 

representation of the ZFS Hamiltonian on the basis of {|+3>, |+1>, |–1>, |–3>} is 

 

𝐻ZFS,1
septet

= (

5𝐷

√15𝐸
0
0

√15𝐸
−3𝐷
6𝐸
0

0
6𝐸
−3𝐷

√15𝐸

0
0

√15𝐸
5𝐷

). 

The eigenenergies and corresponding eigenfunctions of 𝐻ZFS,1
septet

 are 

𝜀+3
(0) = 𝐷 + 3𝐸 + 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 

𝜀+1
(0) = 𝐷 + 3𝐸 − 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 

𝜀−1
(0) = 𝐷 − 3𝐸 − 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 

𝜀−3
(0) = 𝐷 − 3𝐸 + 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 

𝜑+3
(0) = 𝛼+3|+3⟩ + 𝛽+3|+1⟩ + 𝛾+3|−1⟩ + 𝛿+3|−3⟩ 

𝜑+1
(0) = 𝛼+1|+3⟩ + 𝛽+1|+1⟩ + 𝛾+1|−1⟩ + 𝛿+1|−3⟩ 

𝜑−1
(0) = 𝛼−1|+3⟩ + 𝛽−1|+1⟩ + 𝛾−1|−1⟩ + 𝛿−1|−3⟩ 

𝜑−3
(0) = 𝛼−3|+3⟩ + 𝛽−3|+1⟩ + 𝛾−3|−1⟩ + 𝛿−3|−3⟩ 

where 

𝛾𝑛
𝛿𝑛
=
𝛽𝑛
𝛼𝑛
=
𝜀𝑛
(0) − 5𝐷

√15𝐸
, 

𝛼𝑛
𝛿𝑛
= {

1 (if 𝑛 = +3,+1)

−1 (if 𝑛 = −3,−1)
, 

𝛽𝑛
𝛿𝑛
=
𝛼𝑛
𝛿𝑛

𝛽𝑛
𝛼𝑛
=

{
 
 

 
 𝜀𝑛

(0) − 5𝐷

√15𝐸
 (if 𝑛 = +3,+1)

−
𝜀𝑛
(0) − 5𝐷

√15𝐸
 (if 𝑛 = −3,−1)

, 

𝛿𝑛
2 = [2 +

2(𝜀𝑛
(0) − 5𝐷)

2

15𝐸2
]

−1

 

(𝑛 = ±1,±3). 

The matrix elements of the perturbing electron-Zeeman Hamiltonian can be represented as 

(𝐻eZ,1
septet

)
𝑙,𝑚
= 𝑔𝑧

true𝛽𝐵(𝑆𝑧)𝑙,𝑚 

<+3| <–1| 

|+3> 

|+1> 

|–3> 

<+1| <–3| 

|–1> 

(S36a) 

(S36b) 

(S36c) 

(S36d) 

(S37a) 

(S37b) 

(S37c) 

(S37d) 
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→ (𝐻eZ,1
′ )

𝑙,𝑚
= 𝑔𝑧

true𝛽𝐵(3𝛼𝑙𝛼𝑚 + 𝛽𝑙𝛽𝑚 − 𝛾𝑙𝛾𝑚 − 3𝛿𝑙𝛿𝑚) 

= 𝑔𝑧
true𝛽𝐵 (3

𝛼𝑙
𝛿𝑙

𝛼𝑚
𝛿𝑚
+
𝛽𝑙
𝛿𝑙

𝛽𝑚
𝛿𝑚
−
𝛾𝑙
𝛿𝑙

𝛾𝑚
𝛿𝑚
− 3) 𝛿𝑙𝛿𝑚 

=

{
 
 

 
 

0 (if 𝑙𝑚 > 0)

𝑔𝑧
true𝛽𝐵 [(𝐸𝑙

(0) − 5𝐷)(𝐸𝑚
(0) − 5𝐷) − 45𝐸2]

√(𝐸𝑙
(0) − 5𝐷)

2

+ 15𝐸2√(𝐸𝑚
(0) − 5𝐷)

2

+ 15𝐸2

(if 𝑙𝑚 < 0) 

where l, m = ±1, ±3. For example, (𝐻eZ,1
′ )

+3,−1
 represents ⟨𝜑+3

(0)|𝐻eZ,1
′ |𝜑−1

(0)⟩. The perturbed 

energies will be obtained with the Hamiltonian 𝐻eZ,1
′ . 

The matrix representation of the ZFS Hamiltonian counterpart 𝐻ZFS,2
septet

 is 

 

𝐻ZFS,2
septet

= (
0 √30𝐸 0

√30𝐸 −4𝐷 √30𝐸

0 √30𝐸 0

) 

The eigenenergies and eigenfunctions are 

𝜀+2
(0) = −2𝐷 + 2√𝐷2 + 15𝐸2, 𝜑+2

(0) = 𝛼+2|+2⟩ + 𝛽+2|0⟩ + 𝛾+2|−2⟩

𝜀−2
(0) = 0, 𝜑−2

(0) = (|+2⟩ − |−2⟩) √2⁄

𝜀0
(0) = −2𝐷 − 2√𝐷2 + 15𝐸2, 𝜑0

(0) = 𝛼0|+2⟩ + 𝛽0|0⟩ + 𝛾0|−2⟩

 

where 

𝛼+2
𝛽+2

=
𝛾+2
𝛽+2

=
√30𝐸

−2𝐷 + 2√𝐷2 + 15𝐸2
, 𝛽+2 = [1 +

30𝐸2

2𝐷2 + 15𝐸2 − 2𝐷√𝐷2 + 15𝐸2
]

−
1
2

 

𝛼0
𝛽0
=
𝛾0
𝛽0
=

√30𝐸

−2𝐷 − 2√𝐷2 + 15𝐸2
, 𝛽0 = [1 +

30𝐸2

2𝐷2 + 15𝐸2 + 2𝐷√𝐷2 + 15𝐸2
]

−
1
2

. 

Thus the perturbing electron-Zeeman Hamiltonian can be rewritten as follows. 

𝐻eZ,2
septet

= (
2𝑔𝑧

true𝛽𝐵 0 0
0 0 0
0 0 −2𝑔𝑧

true𝛽𝐵
) → 𝐻eZ,2

′ = 2𝑔𝑧
true𝛽𝐵 (

0 0 𝛼+2
0 0 𝛼0
𝛼+2 𝛼0 0

) 

Summarizing the perturbed energies to the second order; 

<+2| <0| <–2| 

|+2> 

|0> 

|–2> 

(S38a) 

(S38b) 

(S38c) 
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𝐸+3
′ = 𝜀+3

(0) +
(𝑔𝑧
true𝛽𝐵)2 [(𝜀+3

(0) − 5𝐷)(𝜀−1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀+3
(0) − 𝜀−1

(0)] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2]

+
(𝑔𝑧
true𝛽𝐵)2 [(𝜀+3

(0) − 5𝐷)(𝜀−3
(0) − 5𝐷) − 45𝐸2]

2

[𝜀+3
(0) − 𝜀−3

(0)] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2]
 

𝐸+2
′ = −2𝐷 + 2√𝐷2 + 15𝐸2 −

2(𝑔𝑧
true𝛽𝐵)2𝛼+2

2

𝐷 − √𝐷2 + 15𝐸2
 

𝐸+1
′ = 𝜀+1

(0) +
(𝑔𝑧
true𝛽𝐵)2 [(𝜀+1

(0) − 5𝐷)(𝜀−1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀+1
(0) − 𝜀−1

(0)] [(𝜀+1
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2]

+
(𝑔𝑧
true𝛽𝐵)2 [(𝜀+1

(0)
− 5𝐷)(𝜀−3

(0)
− 5𝐷) − 45𝐸2]

2

[𝜀+1
(0) − 𝜀−3

(0)] [(𝜀+1
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2]
 

𝐸0
′ = −2𝐷 − 2√𝐷2 + 15𝐸2 −

2(𝑔𝑧
true𝛽𝐵)2𝛼0

2

𝐷 + √𝐷2 + 15𝐸2
 

𝐸−1
′ = 𝜀−1

(0) +
(𝑔𝑧
true𝛽𝐵)2 [(𝜀−1

(0) − 5𝐷)(𝜀+3
(0) − 5𝐷) − 45𝐸2]

2

[𝜀−1
(0) − 𝜀+3

(0)] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2]

+
(𝑔𝑧
true𝛽𝐵)2 [(𝜀−1

(0) − 5𝐷)(𝜀+1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀−1
(0) − 𝜀+1

(0)] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀+1
(0) − 5𝐷)

2

+ 15𝐸2]
 

𝐸−2
′ =

2(𝑔𝑧
true𝛽𝐵)2𝛼+2

2

𝐷 − √𝐷2 + 15𝐸2
+
2(𝑔𝑧

true𝛽𝐵)2𝛼0
2

𝐷 + √𝐷2 + 15𝐸2
 

𝐸−3
′ = 𝜀−3

(0) +
(𝑔𝑧
true𝛽𝐵)2 [(𝜀−3

(0) − 5𝐷)(𝜀+3
(0) − 5𝐷) − 45𝐸2]

2

[𝜀−3
(0) − 𝜀+3

(0)] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2]

+
(𝑔𝑧
true𝛽𝐵)2 [(𝜀−3

(0) − 5𝐷)(𝜀+1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀−3
(0) − 𝜀+1

(0)] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀+1
(0) − 5𝐷)

2

+ 15𝐸2]
. 

The gz
eff/gz

true relationship as a function of E/D for the |MS = ±3> dominant transition is 

calculated from the equation.  

𝐸+3
′ − 𝐸−3

′ = 𝑔𝑧
eff𝛽𝐵 

(S39b) 

(S39f) 

(S39g) 

(S39a) 

(S39c) 

(S39d) 

(S39e) 
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𝜀+3
(0) − 𝜀−3

(0) +
(𝑔𝑧
true𝛽𝐵)2 [(𝜀+3

(0) − 5𝐷)(𝜀−1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀+3
(0) − 𝜀−1

(0)] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2]

+
2(𝑔𝑧

true𝛽𝐵)2 [(𝜀+3
(0) − 5𝐷)(𝜀−3

(0) − 5𝐷) − 45𝐸2]
2

[𝜀+3
(0) − 𝜀−3

(0)] [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2]

−
(𝑔𝑧
true𝛽𝐵)2 [(𝜀−3

(0) − 5𝐷)(𝜀+1
(0) − 5𝐷) − 45𝐸2]

2

[𝜀−3
(0) − 𝜀+1

(0)] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀+1
(0) − 5𝐷)

2

+ 15𝐸2]
= 𝑔𝑧

eff𝛽𝐵; 

 

for the |±2> dominant transition,  

𝐸+2
′ − 𝐸−2

′ = −2𝐷 + 2√𝐷2 + 15𝐸2 −
4(𝑔𝑧

true𝛽𝐵)2𝛼+2
2

𝐷 − √𝐷2 + 15𝐸2
−
2(𝑔𝑧

true𝛽𝐵)2𝛼0
2

𝐷 + √𝐷2 + 15𝐸2
= 𝑔𝑧

eff𝛽𝐵 

15𝑔𝑧
eff𝛽𝐵𝐸2 = 4(𝑔𝑧

true𝛽𝐵)2 (𝐷 + √𝐷2 + 15𝐸2) 𝛼+2
2

+ [2(𝑔𝑧
true𝛽𝐵)2 − 30𝐸2] (𝐷 − √𝐷2 + 15𝐸2)𝛼0

2 

15𝑔𝑧
eff𝛽𝐵𝐸2 = (𝑔𝑧

true𝛽𝐵)2 [4 (𝐷 + √𝐷2 + 15𝐸2)𝛼+2
2 + 2(𝐷 − √𝐷2 + 15𝐸2)𝛼0

2]

− 30𝐸2 (𝐷 − √𝐷2 + 15𝐸2) 𝛼0
2; 

and for the |±1> dominant transition, 

𝐸+1
′ − 𝐸−1

′ = 𝑔𝑧
eff𝛽𝐵. 

Considering equations (S40a)–(S40c) as identities with respect to B, we obtain the special 

solution gz
eff/gz

true = 0 for the |MS = ±2> dominant transition if and only if E/D = 0, while no 

special solutions for the |MS = ±3>, |±1> dominant transitions. 

 

Exploiting the approximate formulas in the following, a simplified expression for 𝐸+3
′  can 

be obtained.  

√2𝐷2 − 3𝐷𝐸 + 3𝐸2 ≈ √2𝐷2 −
3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
 

√2𝐷2 + 3𝐷𝐸 + 3𝐸2 ≈ √2𝐷2 +
3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
 

(S40b) 

(S40a) 

(S40c) 
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𝐸+3
′

= 𝐷 + 3𝐸 + 2√2(√2𝐷2 −
3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
)

+

(𝑔𝑧
true𝛽𝐵)2 [(𝜀+3

(0) − 5𝐷)(𝜀−1
(0) − 5𝐷) − 45𝐸2]

2

[(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2]

6𝐸 + 2√2(√2𝐷2 −
3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
) + 2√2(√2𝐷2 +

3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
)

+

(𝑔𝑧
true𝛽𝐵)2 [(𝜀+3

(0) − 5𝐷)(𝜀−3
(0) − 5𝐷) − 45𝐸2]

2

[(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2]

6𝐸 + 2√2(√2𝐷2 −
3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
) − 2√2(√2𝐷2 +

3√𝐷2𝐸

2√2𝐷
+

15𝐸2

16√2𝐷2
)

 

= 𝐷 + 3𝐸 + 4√𝐷2 −
3√𝐷2𝐸

𝐷
+
15𝐸2

8√𝐷2

+
4√𝐷2(𝑔𝑧

true𝛽𝐵)2 [(𝜀+3
(0) − 5𝐷)(𝜀−1

(0) − 5𝐷) − 45𝐸2]
2

(32𝐷2 + 24√𝐷2𝐸 + 15𝐸2) [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−1
(0) − 5𝐷)

2

+ 15𝐸2]

+
𝐷(𝑔𝑧

true𝛽𝐵)2 [(𝜀+3
(0) − 5𝐷)(𝜀−3

(0) − 5𝐷) − 45𝐸2]
2

(6𝐷𝐸 − 6√𝐷2𝐸) [(𝜀+3
(0) − 5𝐷)

2

+ 15𝐸2] [(𝜀−3
(0) − 5𝐷)

2

+ 15𝐸2]
 

Note that this formula is valid if D < 0, otherwise 𝐷 − √𝐷2 is zero. 
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5.3 Global permutation for ZFS energies in the case of S = 3 

Let us consider the permutation of the axes in the ZFS energies of the spin septet state. The 

calculation for the terms D + 3E, D – 3E and –2D was mentioned in the quintet state. We 

demonstrate here the permutation rules of only the square root terms. 

2√2𝐷2 − 3𝐷𝐸 + 3𝐸2
𝐁∥𝑥
→ √2√𝐷2 + 15𝐸2 

2√2𝐷2 − 3𝐷𝐸 + 3𝐸2
𝐁∥𝑦
→ √2√𝐷2 + 15𝐸2 

2√2𝐷2 + 3𝐷𝐸 + 3𝐸2
𝐁∥𝑥
→ 2√2𝐷2 − 3𝐸𝐷 + 3𝐸2 

2√2𝐷2 + 3𝐷𝐸 + 3𝐸2
𝐁∥𝑦
→ 2√2𝐷2 + 3𝐸𝐷 + 3𝐸2 

2√𝐷2 + 15𝐸2
𝐁∥𝑥
→ 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 

2√𝐷2 + 15𝐸2
𝐁∥𝑦
→ 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 

By using of the relationships above, the permutation relationships are obtained. 

𝜀+3
(0) = 𝐷 + 3𝐸 + 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2

𝐁∥𝑥
→ − 2𝐷 + 2√𝐷2 + 15𝐸2 = 𝜀+2

(0)
 

𝜀+3
(0) 𝐁∥𝑦→ − 2𝐷 + 2√𝐷2 + 15𝐸2 = 𝜀+2

(0)
 

𝜀+2
(0)
= −2𝐷 + 2√𝐷2 + 15𝐸2

𝐁∥𝑥
→ 𝐷 − 3𝐸 + 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 = 𝜀−3

(0)
 

𝜀+2
(0) 𝐁∥𝑦→ 𝐷 + 3𝐸 + 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 = 𝜀+3

(0)
 

𝜀+1
(0) = 𝐷 + 3𝐸 − 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2

𝐁∥𝑥
→ − 2𝐷 − 2√𝐷2 + 15𝐸2 = 𝜀0

(0)
 

𝜀+1
(0) 𝐁∥𝑦→ − 2𝐷 − 2√𝐷2 + 15𝐸2 = 𝜀0

(0)
 

𝜀0
(0) = −2𝐷 − 2√𝐷2 + 15𝐸2

𝐁∥𝑥
→ = 𝐷 − 3𝐸 − 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 = 𝜀−1

(0)
 

𝜀0
(0) 𝐁∥𝑦→ = 𝐷 + 3𝐸 − 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 = 𝜀+1

(0)
 

𝜀−1
(0) = 𝐷 − 3𝐸 − 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2

𝐁∥𝑥
→ 𝐷 + 3𝐸 − 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 = 𝜀+3

(0)
 

𝜀−1
(0) 𝐁∥𝑦→ 𝐷 − 3𝐸 − 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 = 𝜀−1

(0)
 

𝜀−3
(0) = 𝐷 − 3𝐸 + 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2

𝐁∥𝑥
→ 𝐷 + 3𝐸 + 2√2√2𝐷2 − 3𝐷𝐸 + 3𝐸2 = 𝜀+3

(0)
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𝜀−3
(0) 𝐁∥𝑦
→ 𝐷 − 3𝐸 + 2√2√2𝐷2 + 3𝐷𝐸 + 3𝐸2 = 𝜀−3

(0)
 

 

Table S1 Summarized the permutation relationships in the spin-septet state 

B//z B//x B//y 

+3 +2 +2 

+2 –3 +3 

+1 0 0 

0 –1 +1 

-1 +1 –1 

–2 –2 –2 

–3 +3 –3 

*The numbers (0, ±1, ±2, ±3) correspond to the MS of the ZFS energies (e.g. +3 represents 𝜀+3
(0)

). 
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6. Analytical formulas for spin-octet states 

6.1 Derivation of the geff-gtrue relationships as a function of |E/D| in spin-octet states (S = 

7/2) 

The spin Hamiltonian considering the ZFS and electron-Zeeman terms (B//z) for spin-octet 

states can be divided into two matrixes whose basis sets are {|+7/2>, |–5/2>, |+3/2>, |–1/2>} 

and {|–7/2>, |+5/2>, |–3/2>, |+1/2>}, respectively. The matrix representation of the former is 

 

𝐻ZFS+eZ
octet =

(

 
 
7𝐷 +

7

2
𝑔𝑧
true𝛽𝐵

0

√21𝐸
0

0

𝐷 −
5

2
𝑔𝑧
true𝛽𝐵

0

3√5𝐸

√21𝐸
0

−3𝐷 +
3

2
𝑔𝑧
true𝛽𝐵

2√15𝐸

0

3√5𝐸

2√15𝐸

−5𝐷 −
1

2
𝑔𝑧
true𝛽𝐵

)

 
 

 

The exact eigenenergies are the solutions of the following quartic equation. 

𝑥4 − 2𝑔𝑧
true𝛽𝐵𝑥3 − [42(𝐷2 + 3𝐸2) + 20𝐷𝑔𝑧

true𝛽𝐵 +
17

2
(𝑔𝑧
true𝛽𝐵)2] 𝑥2 

−[64(𝐷3 − 9𝐷𝐸2) + (86𝐷2 − 222𝐸2)(𝑔𝑧
true𝛽𝐵) + 44𝐷(𝑔𝑧

true𝛽𝐵)2 −
19

2
(𝑔𝑧
true𝛽𝐵)3] 𝑥 

+105(𝐷2 + 3𝐸2)2 − 84(3𝐷3 − 7𝐷𝐸2)(𝑔𝑧
true𝛽𝐵) −

105

2
(𝐷2 − 5𝐸2)(𝑔𝑧

true𝛽𝐵)2

+ 63𝐷(𝑔𝑧
true𝛽𝐵)3 +

105

16
(𝑔𝑧
true𝛽𝐵)4 = 0 

In order to eliminate the x3 term, replacing x with x + gz
trueβB/2. 

𝑥4 − [42(𝐷2 + 3𝐸2) + 20𝐷𝑔𝑧
true𝛽𝐵 + 10(𝑔𝑧

true𝛽𝐵)2]𝑥2 

−[64(𝐷3 − 9𝐷𝐸2) + (128𝐷2 − 96𝐸2)(𝑔𝑧
true𝛽𝐵) + 64𝐷(𝑔𝑧

true𝛽𝐵)2]𝑥 

+105(𝐷2 + 3𝐸2)2 − (284𝐷3 − 876𝐷𝐸2)(𝑔𝑧
true𝛽𝐵) − (106𝐷2 − 342𝐸2)(𝑔𝑧

true𝛽𝐵)2

+ 36𝐷(𝑔𝑧
true𝛽𝐵)3 + 9(𝑔𝑧

true𝛽𝐵)4 = 0 

The resolvent cubic equation for the quartic equation above is 

𝑢3 + 2𝑝𝑢2 + (𝑝2 − 4𝑟)𝑢 − 𝑞2 = 0 

where 

𝑝 = −42(𝐷2 + 3𝐸2) − 20𝐷𝑔𝑧
true𝛽𝐵 − 10(𝑔𝑧

true𝛽𝐵)2 

𝑞 = −64(𝐷3 − 9𝐷𝐸2) − (128𝐷2 − 96𝐸2)(𝑔𝑧
true𝛽𝐵) − 64𝐷(𝑔𝑧

true𝛽𝐵)2 

𝑟 = 105(𝐷2 + 3𝐸2)2 − (284𝐷3 − 876𝐷𝐸2)(𝑔𝑧
true𝛽𝐵) − (106𝐷2 − 342𝐸2)(𝑔𝑧

true𝛽𝐵)2

+ 36𝐷(𝑔𝑧
true𝛽𝐵)3 + 9(𝑔𝑧

true𝛽𝐵)4. 

Replacing u with u – 2p/3 gives us the following equation; 

𝑢3 =
1

3
(𝑝2 + 12𝑟)𝑢 +

1

27
(2𝑝3 − 72𝑝𝑟 + 27𝑞2). 

One of the solutions of the cubic equation is 

𝑢0 = 2𝑎 cos [
1

3
arccos (

𝑏0
2𝑎0

)] −
2𝑝

3
 

<+7/2| <+3/2| 

|+7/2> 

|–5/2> 

|–1/2> 

<–5/2| <–1/2| 

|+3/2> 
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where 

𝑎0 =
√𝑝2 + 12𝑟

3
 

𝑏0 =
2𝑝3 − 72𝑝𝑟 + 27𝑞2

3𝑝2 + 36𝑟
. 

Therefore, the exact energies of the Hamiltonian are 

𝐸 =
𝑔𝑧
true𝛽𝐵

2
−
1

2
[√𝑢0 ±√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] 

and 

𝐸 =
𝑔𝑧
true𝛽𝐵

2
+
1

2
[√𝑢0 ±√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] 

The eigenenergies of the conjugate Hamiltonian are obtained with replacing B with –B in the 

solutions above. The geff-gtrue relationships between the |±MS>-dominant states assuming EMs(B, 

E/D) – E–Ms(B, E/D) = hν = gz
effβB. Figure S11 depicts geff/gtrue as a function of |E/D| together 

with the counterpart from the genuine Zeeman perturbation treatment. 

 

 

 

Figure S11 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts x, y and 

z denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the broken lines 
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are based on the exact solutions with the spin Hamiltonian parameters with gz
trueβB/D = 0.1. Those derived 

by the genuine Zeeman perturbation treatment to the third order are depicted in the solid curves. 

 

 

 
Figure S12 The transition probabilities for |MS = ±7/2>, |±5/2>, |±3/2>, |±1/2>-dominant states (gz

trueβB/D = 

0.1). B//x (red), y (green), z (blue). Because of the overlapping in the case of B//y and z, the blue broken line 

was used. 
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6.2 The geff-gtrue relationships by using of a Zeeman perturbation approach in the case of 

spin-octet states (S = 7/2) 

The ZFS Hamiltonian (E ≠ 0) in spin-octet states can be divided to two equivalent 4 × 4 

matrices whose basis sets are {|+7/2>, |–5/2>, |+3/2>, |–1/2>} and {|–7/2>, |+5/2>, |–3/2>, 

|+1/2>}. The basis sets are conjugate.  

 

𝐻ZFS
octet = (

7𝐷
0

√21𝐸
0

0
𝐷
0

3√5𝐸

√21𝐸
0
−3𝐷

2√15𝐸

0

3√5𝐸

2√15𝐸
−5𝐷

) 

The eigenenergies are the solutions of the following quartic equation: 

𝑥4 − 42(𝐷2 + 3𝐸2)𝑥2 − 64𝐷(𝐷2 − 9𝐸2)𝑥 + 105(𝐷2 + 3𝐸2)2 = 0. 

The resolvent cubic equation of this quartic equation is 

𝑢3 + 2𝑝𝑢2 + (𝑝2 − 4𝑟)𝑢 − 𝑞2 = 0 

where 

𝑝 = −42(𝐷2 + 3𝐸2) 

𝑞 = −64𝐷(𝐷2 − 9𝐸2) 

𝑟 = 105(𝐷2 + 3𝐸2)2. 

Replacing u with u – 2p/3. 

𝑢3 =
1

3
(𝑝2 + 12𝑟)𝑢 +

1

27
(27𝑞2 + 2𝑝3 − 72𝑝𝑟) 

According to the Viete’s method, one of the solutions is obtained as  

𝑢0 = 2𝑎0 cos [
1

3
arccos (

𝑏0
2𝑎0
)] −

2𝑝

3
 

where 

𝑎0 =
√𝑝2 + 12𝑟

3
 

𝑏0 =
27𝑞2 + 2𝑝3 − 72𝑝𝑟

3𝑝2 + 36𝑟
. 

The quartic equation can be rewritten as the product of the two quadratic equation with 𝑢0 

{(𝑥2 +
𝑝 + 𝑢0
2

) + √𝑢0 (𝑥 −
𝑞

2𝑢0
)} {(𝑥2 +

𝑝 + 𝑢0
2

) − √𝑢0 (𝑥 −
𝑞

2𝑢0
)} = 0 

⇔

{
  
 

  
 
𝑥 =

1

2
[−√𝑢0 ±√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
]

𝑥 =
1

2
[√𝑢0 ±√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] .

 

<+7/2| <+3/2| 

|+7/2> 

|–5/2> 

|–1/2> 

<–5/2| <–1/2| 

|+3/2> 
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The eigenenergies 𝜀𝑀𝑠
(0)

 and eigenfunctions 𝜑𝑀𝑠
(0)

 are given as  

𝜀
+7
2

(0)
= 𝑥1 =

1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] 

𝜀
−5
2

(0)
= 𝑥2 =

1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] 

𝜀
+3
2

(0)
= 𝑥3 =

1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] 

𝜀
−1
2

(0)
= 𝑥4 =

1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] 

𝜑
+7
2

(0)
= 𝜑1 = 𝛼1 |+

7

2
⟩ + 𝛽1 |−

5

2
⟩ + 𝛾1 |+

3

2
⟩ + 𝛿1 |−

1

2
⟩ 

𝜑
−5
2

(0)
= 𝜑2 = 𝛼2 |+

7

2
⟩ + 𝛽2 |−

5

2
⟩ + 𝛾2 |+

3

2
⟩ + 𝛿2 |−

1

2
⟩ 

𝜑
+3
2

(0)
= 𝜑3 = 𝛼3 |+

7

2
⟩ + 𝛽3 |−

5

2
⟩ + 𝛾3 |+

3

2
⟩ + 𝛿3 |−

1

2
⟩ 

𝜑
−1
2

(0)
= 𝜑4 = 𝛼4 |+

7

2
⟩ + 𝛽4 |−

5

2
⟩ + 𝛾4 |+

3

2
⟩ + 𝛿4 |−

1

2
⟩ 

where 

𝛼𝑛
𝛾𝑛
=
√21𝐸

𝑥𝑛 − 7𝐷
 

𝛿𝑛
𝛾𝑛
=

1

2√15𝐸
(𝑥𝑛 + 3𝐷 −

21𝐸2

𝑥𝑛 − 7𝐷
) 

𝛽𝑛
𝛾𝑛
=

√3

2(𝑥𝑛 −𝐷)
(𝑥𝑛 + 3𝐷 −

21𝐸2

𝑥𝑛 − 7𝐷
) 

𝛾𝑛
2 = [

21𝐸2

(𝑥𝑛 − 7𝐷)
2
+

3𝐸

4(𝑥𝑛 − 𝐷)
2 (𝑥𝑛 + 3𝐷 −

21𝐸2

𝑥𝑛 − 7𝐷
)

2

+
1

60𝐸2
(𝑥𝑛 + 3𝐷 −

21𝐸2

𝑥𝑛 − 7𝐷
)

2

+ 1]

−1

 

(𝑛 = 1, 2, 3, 4).  

The elements of the perturbing Hamiltonian (H’eZ) are given as  

(𝐻eZ
′ )𝑖𝑗 = (+

7

2
𝛼𝑖𝛼𝑗 −

5

2
𝛽𝑖𝛽𝑗 +

3

2
𝛾𝑖𝛾𝑗 −

1

2
𝛿𝑖𝛿𝑗) 𝑔𝑧

true𝛽𝐵 

(S42b) 

(S42a) 

(S42c) 

(S42d) 

(S43b) 

(S43a) 

(S43c) 

(S43d) 
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where i, j = 1–4. For example, (𝐻eZ
′ )12 corresponds to ⟨𝜑

+7
2

(0)
|𝐻eZ
′ |𝜑

−5
2

(0)
⟩. Since the zeroth and 

the second-order terms vanish when the energy differences (Ei – Ej) are taken, gz
eff/gz

true can be 

represented as 

𝑔𝑧
eff

𝑔𝑧
true

=

147𝜆2

(𝑥𝑛′ − 7)2
−

15
4(𝑥𝑛′ − 1)2

(𝑥𝑛
′ + 3 −

21𝜆2

𝑥𝑛′ − 7
)
2

−
1
60𝜆2

(𝑥𝑛
′ + 3 −

21𝜆2

𝑥𝑛′ − 7
)
2

+ 3

21𝜆2

(𝑥𝑛′ − 7)2
+

3
4(𝑥𝑛′ − 1)2

(𝑥𝑛′ + 3 −
21𝜆2

𝑥𝑛′ − 7
)
2

+
1
60𝜆2

(𝑥𝑛′ + 3 −
21𝜆2

𝑥𝑛′ − 7
)
2

+ 1

 

(n = 1–4) 

where 

𝑥𝑛
′ =

𝑥𝑛

𝐷
 

𝜆 =
𝐸

𝐷
. 

The perturbed wavefunctions to the first order are 

Ψ
+7
2

′ =
1

𝑁1
[𝜑1 +

(𝐻’)12
𝑥1 − 𝑥2

|−
5

2
⟩ +

(𝐻’)13
𝑥1 − 𝑥3

|+
3

2
⟩ +

(𝐻’)14
𝑥1 − 𝑥4

|−
1

2
⟩] 

Ψ
−5
2

′ =
1

𝑁2
[
(𝐻’)21
𝑥2 − 𝑥1

|+
7

2
⟩ + 𝜑2 +

(𝐻’)23
𝑥2 − 𝑥3

|+
3

2
⟩ +

(𝐻’)24
𝑥2 − 𝑥4

|−
1

2
⟩] 

Ψ
+3
2

′ =
1

𝑁3
[
(𝐻’)31
𝑥3 − 𝑥1

|+
7

2
⟩ +

(𝐻’)32
𝑥3 − 𝑥2

|−
5

2
⟩ + 𝜑3 +

(𝐻’)34
𝑥3 − 𝑥4

|−
1

2
⟩] 

Ψ
−1
2

′ =
1

𝑁4
[
(𝐻’)41
𝑥4 − 𝑥1

|+
7

2
⟩ +

(𝐻’)42
𝑥4 − 𝑥2

|−
5

2
⟩ +

(𝐻’)43
𝑥4 − 𝑥3

|+
3

2
⟩ + 𝜑4] 

where N is the normalization factor. The other sets {Ψ’–7/2, Ψ’+5/2, Ψ’–3/2, Ψ’+1/2} are obtained 

with replacing B with –B and the normalization factor is represented as N’. 

The transition probabilities P±Ms = |<Ψ’–Ms|Sx|Ψ’+Ms>|2: 

For the |MS = ±7/2>-dominant transition, 

1

𝑁1
′

1

𝑁1
[𝛼1 ⟨−

7

2
| + (𝛽1 −

(𝐻’)12
𝑥1 − 𝑥2

) ⟨+
5

2
| + (𝛾1 −

(𝐻’)13
𝑥1 − 𝑥3

) ⟨−
3

2
|

+ (𝛿1 −
(𝐻’)14
𝑥1 − 𝑥4

) ⟨+
1

2
|] 𝑆𝑥 [𝛼1 |+

7

2
⟩ + (𝛽1 +

(𝐻’)12
𝑥1 − 𝑥2

) |−
5

2
⟩

+ (𝛾1 +
(𝐻’)13
𝑥1 − 𝑥3

) |+
3

2
⟩ + (𝛿1 +

(𝐻’)14
𝑥1 − 𝑥4

) |−
1

2
⟩] ; 

=
1

𝑁1
′

1

𝑁1
[√7𝛼1𝛽1 + 2√3𝛽1𝛾1 + √15𝛾1𝛿1 + 2𝛿1

2 −
2√3(𝐻’)12(𝐻’)13
(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)

−
√15(𝐻’)13(𝐻’)14
(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)

−
2(𝐻’)14

2

(𝑥1 − 𝑥4)2
] ; 

for the |±5/2> dominant transition, 

(S44) 

(S45b) 

(S45a) 

(S45c) 

(S45d) 



S52 

 

1

𝑁2
′

1

𝑁2
[(𝛼2 +

(𝐻’)21
𝑥2 − 𝑥1

) ⟨+
7

2
| + 𝛽2 ⟨−

5

2
| + (𝛾2 +

(𝐻’)23
𝑥2 − 𝑥3

) ⟨+
3

2
|

+ (𝛿2 +
(𝐻’)24
𝑥2 − 𝑥4

) ⟨−
1

2
|] 𝑆𝑥 [(𝛼2 −

(𝐻’)21
𝑥2 − 𝑥1

) |−
7

2
⟩ + 𝛽2 |+

5

2
⟩

+ (𝛾2 −
(𝐻’)23
𝑥2 − 𝑥3

) |−
3

2
⟩ + (𝛿2 −

(𝐻’)24
𝑥2 − 𝑥4

) |+
1

2
⟩] 

=
1

𝑁2
′

1

𝑁2
[√7𝛼2𝛽2 + 2√3𝛽2𝛾2 + √15𝛾2𝛿2 + 2𝛿2

2 −
√15(𝐻’)23(𝐻’)24
(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)

−
2(𝐻’)24

2

(𝑥2 − 𝑥4)2
] ; 

for the |±3/2> dominant transition, 

1

𝑁3
′

1

𝑁3
[(𝛼3 −

(𝐻’)31
𝑥3 − 𝑥1

) ⟨−
7

2
| + (𝛽3 −

(𝐻’)32
𝑥3 − 𝑥2

) ⟨+
5

2
| + 𝛾3 ⟨−

3

2
|

+ (𝛿3 −
(𝐻’)34
𝑥3 − 𝑥4

) ⟨+
1

2
|] 𝑆𝑥 [(𝛼3 +

(𝐻’)31
𝑥3 − 𝑥1

) |+
7

2
⟩ + (𝛽3 +

(𝐻’)32
𝑥3 − 𝑥2

) |−
5

2
⟩

+ 𝛾3 |+
3

2
⟩ + (𝛿3 +

(𝐻’)34
𝑥3 − 𝑥4

) |−
1

2
⟩] 

=
1

𝑁3
′

1

𝑁3
[√7𝛼3𝛽3 + 2√3𝛽3𝛾3 + √15𝛾3𝛿3 + 2𝛿3

2 −
√7(𝐻’)31(𝐻’)32
(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

−
2(𝐻’)34

2

(𝑥3 − 𝑥4)2
] ; 

for the |±1/2> dominant transition, 

1

𝑁4
′

1

𝑁4
[(𝛼4 +

(𝐻’)41
𝑥4 − 𝑥1

) ⟨+
7

2
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(𝐻’)42
𝑥4 − 𝑥2
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2
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) ⟨+
3

2
|
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1

2
|] 𝑆𝑥 [(𝛼4 −

(𝐻’)41
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7

2
⟩ + (𝛽4 −

(𝐻’)42
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2
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3
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2
⟩] 

=
1

𝑁4
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1

𝑁4
[√7𝛼4𝛽4 + 2√3𝛽4𝛾4 + √15𝛾4𝛿4 + 2𝛿4

2 −
√7(𝐻’)41(𝐻’)42
(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)

−
2√3(𝐻’)42(𝐻’)43
(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)
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7. Single-crystal cw ESR/ENDOR and pulsed ESR spectroscopy of FeIII(Cl)OEP  

7.1 Angular dependence of cw ESR spectra of FeIII(Cl)OEP diluted in NiIIOEP single-

crystals in the crystallographic abc axis system 

 

Figure S13 Angular dependence of cw ESR spectra of FeIII(Cl)OEP diluted in a NiIIOEP single-crystal in the 

bc-plane. Four magnetically nonequivalent species were observed due to the distortion originating in a 

pseudo Jahn-Teller interaction. The experimental angular dependence indicated that the crystal was 

misaligned on a wedge: the departure from the c-axis was estimated around 5 degrees. Microwave frequency: 

9.51420 GHz, temperature: 5.0 K. 

 

 

 

Figure S14 The ESR spectra of FeIII(Cl)OEP observed with B//b and nearly //c: Microwave frequency 

used: 9.51420 GHz and temperature: 5.0 K. 

  

B//c 

B//b 
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7.2 Typical ESR spectra of FeIII(Cl)OEP observed at liquid helium temperature 

Typical ESR spectra of FeIII(Cl) diluted in the NiIIOEP single-crystal are shown below with 

the two coordinate axis systems, the crystallographic abc and laboratory (principal) xyz systems. 

 

Figure S15 Typical ESR spectra of FeIII(Cl)OEP diluted in the NiIIOEP single-crystal are shown with the two 

coordinate axis systems, the crystallographic abc and laboratory (principal) xyz systems. The c axis is parallel 

to the z axis and the a axis deviates 2.3 degrees from the x axis. The experimentally determined principal 

values and direction cosines of the g-tensor in terms of the effective spin Hamiltonian are given. The values 

are the averaged ones over the four energetically non-equivalent species. 

  

B//a axis 

B//c axis 

g-tensor of FeIII(Cl)OEP 
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7.3 Temperature dependence of the spin-lattice relaxation time T1 of FeIII(Cl)OEP 

determined by an inversion recovery method based on pulsed ESR spectroscopy 

We measured the temperature dependence of T1 of FeIII(Cl)OEP determined by an inversion 

recovery method based on pulsed ESR spectroscopy. Temperature was the range of 3 to 5 K. 

We applied the pulse sequence of the π–π/2–π–echo scheme. The measurements were carried 

out with B//c and //b. T1 with B//c was shorter, which is ascribable to the occurrence of a sizable 

spin–orbit interaction.   

2𝐷∗ = Δ = 14.1 cm−1 

Thus,  

𝐷∗ = +7.05 cm−1 

 

Figure S16 Temperature dependence of T1 of FeIII(Cl)OEP with B//c as determined by an inversion recovery 

method. The Orbach process gave the better fitting, enabling us to derive the energy difference . 

  

Temperature Dependence of T1 of Fe(III)(Cl)OEP determined by an 

inversion recovery method based on pulsed ESR spectroscopy

Temperature dependence of T1 is 

governed by three relaxation processes. 

(B0 // c)

1. Direct process (one-phonon process) 

1/T1  T

2. Raman process (two-phonon process)

1/T1  T  9

3. Orbach process (two-phonon process)

1/T1  {exp ( / kT) -1}-1
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7.4 Angular dependences of both the spin-lattice relaxation time T1 and spin-spin 

relaxation time T2 of FeIII(Cl)OEP 

The T2 measurements were carried out with the conventional 2-pulse echo method: π/2–π–

echo. Both relaxation times were observed in B//c (perpendicular to the porphyrin plane) and 

a-axes (in the porphyrin plane). It was confirmed that both the spin-lattice and spin-spin 

relaxation times become short with the magnetic field B in the porphyrin plane (a axis). This 

phenomenon can be interpreted in terms of the spin sub-level mixing by the spin–orbit 

interaction. 

 

 
Figure S17 Echo intensity for the pulse interval τ of the first and second pulse in the different external 

magnetic field orientation. Red: B//c, blue: B//a. 

 

Table S2 Spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) in the different crystallographic 

(principal) axes: c//z and a//x. 

B// T1/μs T2/μs 

c axis 4.15 0.27 

a axis 0.23 0.025 

 

Angular dependences of both spin-lattice relaxation time T1 and spin-

spin relaxation time T2

 / s
0 2 4 6 8 10

B0

a

c

Fe
b

It was confirmed that both  the spin-lattice  and spin-spin relaxation times become 

short with the magnetic field B0 in the porphyrin plane (a axis).  This phenomenon 

can  be interpreted in terms of the spin sublevel mixing by the spin-orbit interaction.

c axis 4.15                0.27

a axis 0.23                0.025

T1 / s            T2 / sB0 //

T1 measurements by the inversion 

recovery method
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7.5 14N-ENDOR spectroscopy of FeIII(Cl)OEP diluted in NiIIOEP single-crystals 

We simulated the ENDOR spectra of FeIII(Cl)OEP diluted in the NiIIOEP single crystal in 

terms of a coupled basis set for the effective spin-1/2 state (S = 1/2) and the nuclear spin states 

arising from the four nitrogen nuclei (I = 1). 

𝐻eff = 𝛽𝐒̃ ∙ 𝐠eff ∙ 𝐁 +∑(𝐒̃ ∙ 𝐀𝑖
eff ∙ 𝐈𝑖 + 𝐈̃𝑖 ∙ 𝐐𝑖

eff ∙ 𝐈𝑖 − 𝑔𝑛𝛽𝑛𝐈̃𝑖 ∙ 𝐁)

4

𝑖=1

 

where gx
eff = 5.9584, gy

eff = 6.0642, gz
eff = 2.0972, Ax

eff = 9.0 MHz, Ay
eff = 7.60 MHz, Az

eff = 

7.80 MHz, Qx
eff = –0.80 MHz, Qy

eff = 1.05 MHz, Qz
eff = –0.25 MHz were determined by the 

best fitting procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S18 Observed and simulated single-crystal 14N-ENDOR spectra of FeIII(Cl)OEP in B//c axis.  

  

Simulation of a single-crystal 14N-ENDOR spectrum

Parameters determined by the simulation 

Hyperfine Tensor  A :

Axx = 9.0 MHz

Ayy = 7.60 MHz

Azz = 7.80 MHz 

Quadrupole Tensor Q :  

Qxx = - 0.80 MHz

Qyy =   1.05 MHz

Qzz =  - 0.25 MHz 

Ruffling : 14.2 Deg

θ = 3.5°, Φ = 0.0°
☆S4 symmetry is assumed.

We simulated the 14N-ENDOR spectrum in terms of a 

coupled basis set for the fictious electron spin state(S=1/2) 

and the nuclear spin states arising from the four nitrogen 

nuclei (I=1).
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7.6 Pulse-based electron spin nutation spectroscopy of FeIII(Cl)OEP diluted in NiIIOEP 

single-crystal 

 

 

 

* 

* 

* 

* 
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Figure S19 (Top) Echo-detected ESR spectrum at X-band applied to FeIII(Cl)OEP (S = 5/2) magnetically 

diluted in the diamagnetic NiIIOEP single-crystal with the static magnetic field along the principal z-axis at 

4 K. The positions marked by (a)-(c) correspond to the external magnetic field at which the one-dimensional 

electron spin transient nutation (1D-ESTN) experiments were carried out at 3 K (middle). All the signals 

arise from the FeIII(Cl)OEP molecules with different molecular orientations with respect to the static magnetic 

field. The peaks assigned with asterisks were analytical artifacts. (Bottom) The nutation spectrum calculated 

by the set of the full spin Hamiltonian parameters experimentally determined. The calculated nutation 

frequency is 3.03 times greater than the nutation frequency, 12.2 MHz of DPPH (S = 1/2) used as an external 

reference for the frequency calibration, indicating that the signal denoted by (c) (in the top figure) is assigned 

to be the transition between the |±1/2>-dominant spin sub-levels of the spin-sextet state. The nutation 

spectroscopy for the reference signal was detected by using a different scheme of the detection from that for 

FeIII(Cl)OEP, enabling us to experimentally discriminate the nutation frequency of the reference from that of 

FeIII(Cl)OEP. 
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8. Single-crystal and powder-pattern ESR spectroscopy of CoIIOEP diluted in 

diamagnetic NiIIOEP single-crystals 

8.1 Principal values and direction cosine of the magnetic tensors of CoIIOEP 

experimentally determined by the fictitious spin-1/2 spin Hamiltonian approach 

 

Table S3 Principal values and direction cosines of their axes of the spin Hamiltonian parameters of CoIIOEP 

at helium temperature. The direction cosines are given in the crystallographic axis system. The analyses were 

based on the fully numerical diagonalization with least-square fitting.  

Molecule 1 Principal values Direction cosines 

a b c 

gx 3.4485±0.001 0.66210 –0.74936 0.00252 

gy 3.3287±0.002 –0.74941 –0.6621 0.00173 

gz 1.5421±0.001 –0.00297 0.00074 1.00000 

Ax(59Co)/MHz 1391.5±0.74 0.67021 –0.74216 0.00398 

Ay(59Co)/MHz 1347.3±1.06 –0.74216 –0.67022 –0.00168 

Az(59Co)/MHz 597.5±0.82 0.00398 0.00183 0.99999 

Qx(59Co)/MHz –0.10±0.76 0.74703 0.58062 0.32376 

Qy(59Co)/MHz –2.20±0.72 0.46618 –0.80473 0.36754 

Qz(59Co)/MHz 2.29±0.76 –0.47395 0.12364 0.87183 

 

Molecule 2 Principal values Direction cosines 

a b c 

gx 3.3296±0.001 0.67729 0.73571 0.00131 

gy 3.4445±0.002 0.73569 –0.67729 –0.00603 

gz 1.5372±0.0004 –0.00535 0.00312 0.99998 

Ax(59Co)/MHz 1345.2±0.71 0.69058 0.72325 0.00211 

Ay(59Co)/MHz 1390.6±1.04 0.72325 –0.69058 –0.00236 

Az(59Co)/MHz 605.0±0.83 0.00211 –0.00121 1.00000 

Qx(59Co)/MHz –2.92±0.66 –0.23227 –0.03435 0.97024 

Qy(59Co)/MHz –3.34±0.63 0.71330 –0.68543 0.14622 

Qz(59Co)/MHz 6.25±0.66 –0.66125 0.72732 –0.18372 
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8.2 Principal values and direction cosine of the magnetic tensors of 14N nuclei of CoIIOEP 

experimentally determined by the fictitious spin-1/2 Hamiltonian approach 

 

Table S4 Principal values and axes of the magnetic tensors of nitrogen nuclei in molecule 1 (component 1) 

at helium temperature.  

Tensors for N1 

and N3 

Principal values Direction cosines 

a b c 

Ax(14N)/MHz 2.2155 ∓0.6694 ∓0.2994 0.6799 

Ay(14N)/MHz 2.7476 ±0.7364 ∓0.1465 0.6625 

Az(14N)/MHz 5.4474 ∓0.0982 ±0.9428 0.3185 

Qx(14N)/MHz –0.7852 0.1308 –0.9913 ∓0.0982 

Qy(14N)/MHz 0.2326 ∓0.0119 ∓0.0165 0.9998 

Qz(14N)/MHz 0.5526 –0.9913 –0.1306 –0.0140 

 

Tensors for N2 

and N4 

Principal values Direction cosines 

a b c 

Ax(14N)/MHz 2.4151 ±0.3109 ∓0.7526 0.5789 

Ay(14N)/MHz 2.5614 ±0.1557 ±0.6422 0.7505 

Az(14N)/MHz 5.4811 ∓0.9366 ∓0.1455 0.3188 

Qx(14N)/MHz 0.2452 ∓0.9900 ∓0.1391 ∓0.0236 

Qy(14N)/MHz –0.7899 –0.0135 –0.0729 ∓0.9972 

Qz(14N)/MHz 0.5446 –0.1404 0.9876 ∓0.0703 

* Both the upper and lower signs should be chosen in the double signs. 
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Table S5 Principal values and axes of the magnetic tensors of nitrogen nuclei in molecule 2 (component 2) 

at helium temperature. 

Tensors for N1 

and N3 

Principal values Direction cosines 

a b c 

Ax(14N)/MHz 2.6876 ±0.3025 ∓0.8368 0.4564 

Ay(14N)/MHz 1.9565 ±0.1721 ±0.5189 0.8373 

Az(14N)/MHz 5.4859 ∓0.9375 ±0.1747 0.3010 

Qx(14N)/MHz 0.2412 –0.9968 –0.0772 ±0.0236 

Qy(14N)/MHz –0.7811 ±0.0222 ±0.0012 0.9998 

Qz(14N)/MHz 0.5369 –0.0772 0.9970 ±0.0005 

 

Tensors for N2 

and N4 

Principal values Direction cosines 

a b c 

Ax(14N)/MHz 2.2819 ∓0.6223 ∓0.3041 –0.7213 

Ay(14N)/MHz 2.6443 ∓0.7784 ±0.1421 0.6115 

Az(14N)/MHz 5.4322 ±0.0834 ∓0.9420 0.3251 

Qx(14N)/MHz –0.7798 –0.1249 0.9922 ∓0.0041 

Qy(14N)/MHz 0.2377 ∓0.0665 ∓0.0042 0.9978 

Qz(14N)/MHz 0.5421 0.9899 0.1249 ±0.0665 

* Both the upper and lower signs should be chosen in the double signs. 
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8.3 Angular dependence of the ESR spectra of CoIIOEP with the static magnetic field in 

the principal zx plane; Simulated in terms of the fictitious spin and ZFS/e-Zeeman spin 

Hamiltonian parameters 

 

Figure S20 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by 

using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 

0.5 mT. Magnetic tensors used: (component 1) geff = [3.3915, 3.4036, 1.5470], Aeff = [1349.6, 1372.2, 624.9] 

MHz, Q = [–0.10, –2.20, 2.29] MHz, (component2) geff = [3.3232, 3.4532, 1.5570], Aeff = [1347.7. 1382.3, 

614.9] MHz, Q = [–2.92, –3.34, 6.25] MHz. the geff-, Aeff- and Q-tensors of the component 1 were assumed 

to be collinear. The relative orientations of each tensor of the component 2 were based on the direction cosines 

shown in Table S3. The top the spectrum is the absorption line corresponding to the summation for the all 

magnetic field orientations for comparison. Any strain effect of the line width is not included. The simulated 

spectra were obtained using EasySpin (ver. 5.1.10) with varying the angle of the magnetic field one-degree 

stepwise. The peak denoted by the dotted line is assigned to the occurrence of the off-principal-axis peak. 

Noticeably, the zx-plane angular dependence of the fine-structure/hyperfine spectra due to CoIIOEP reveals 

marked difference of the behavior of the transitions appearing in the range of 30 to 60 degrees between the 

fictitious spin and ZFS/e-Zeeman spin Hamiltonian approaches (see Fig. 21). 

  

B//z 
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Figure S21 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by 

using of the ZFS/e-Zeeman spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line 

width: 0.5 mT. Magnetic tensors used: (component 1) gtrue = [1.7138, 1.6842, 1.5472], Atrue = [682.0, 679.0, 

625.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–0.99, –1.01, 2.0] MHz, (component2) gtrue = [1.7087, 1.6793, 

1.5572], Atrue = [681.0, 684.0, 615.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–1.01, –0.99, 2.0] MHz. The 

gtrue-, Atrue-, D- and Q-tensors of the component 1 were collinear. The relative orientations of each tensor of 

the component 2 were based on the direction cosines shown in Table S3. Any strain effect of the line width 

is not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) with varying the angle of 

the magnetic field one-degree stepwise. The peak denoted by the dotted line is assigned to the occurrence of 

the off-principal-axis peak. Noticeably, the zx-plane angular dependence of the fine-structure/hyperfine 

spectra due to CoIIOEP reveals marked difference of the behavior of the transitions appearing in the range of 

30 to 60 degrees between the fictitious spin and ZFS/e-Zeeman spin Hamiltonian approaches (see Fig. S20). 
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Figure S22 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by 

using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 

0.5 mT. Magnetic tensors used: (component 1) geff = [3.3915, 3.4036, 1.5470], Aeff = [1349.6, 1372.2, 624.9] 

MHz, Q = [–0.10, –2.20, 2.29] MHz, (component2) geff = [3.3232, 3.4532, 1.5570], Aeff = [1347.7. 1382.3, 

614.9] MHz, Q = [–2.92, –3.34, 6.25] MHz. the geff-, Aeff- and Q-tensors of the component 1 were assumed 

to be collinear. The relative orientations of each tensor of the component 2 were based on the direction cosines 

shown in Table S32. The top the spectrum is the absorption line corresponding to the summation for the all 

magnetic field orientations for comparison. Any strain effect of the line width is not included. The simulated 

spectra were obtained using EasySpin (ver. 5.1.10) with varying the angle of the magnetic field one-degree 

stepwise. 
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Figure S23 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by 

using of the ZFS/e-Zeeman spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line 

width: 0.5 mT. Magnetic tensors used: (component 1) gtrue = [1.7138, 1.6842, 1.5472], Atrue = [682.0, 679.0, 

625.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–0.99, –1.01, 2.0] MHz, (component2) gtrue = [1.7087, 1.6793, 

1.5572], Atrue = [681.0, 684.0, 615.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–1.01, –0.99, 2.0] MHz. The 

gtrue-, Atrue-, D- and Q-tensors of the component 1 were collinear. The relative orientations of each tensor of 

the component 2 were based on the direction cosines shown in Table S2. Any strain effect of the line width 

is not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) with varying the angle of 

the magnetic field one-degree stepwise.  

  

B//c 

B//a 
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8.4 Simulation of the powder-pattern fine-structure/hyperfine ESR spectra of 

CoIIOEP/NiIIOEP  

 
Figure S24 Spectral simulation of the power-pattern ESR spectra of CoIIOEP. The spectra in blue and red 

are based on the fictitious spin-1/2 and ZFS/e-Zeeman spin Hamiltonian approach, respectively. Microwave 

frequency used: 9.40914 GHz, peak-to-peak line width: 1.0 mT. Magnetic tensors: (component 1) gtrue = 

[1.7138, 1.6842, 1.5472], Atrue = [682.0, 679.0, 625.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–0.10, –2.20, 

2.29] MHz, and (component2) gtrue = [1.7087, 1.6793, 1.5572], Atrue = [681.0, 684.0, 615.0] MHz, D = +10 

cm–1, E/D = 0.007, Q = [–2.92, –3.34, 6.25] MHz. The g-, A-, D- and Q-tensors of the component 1 were 

collinear. The relative orientations of each tensor of the component 2 were based on the direction cosines 

shown in Table S3. Any strain effect of the line width is not included. The simulated spectra were obtained 

by using EasySpin (ver. 5.1.10). 

  

×5 

×5 
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8.5 Simulation of the powder-pattern ESR spectra composed of the forbidden transitions 

of CoIIOEP/NiIIOEP 

 
Figure S25 Spectral simulation of the powder-pattern spectra of CoIIOEP with the parallel excitation mode. 

The spectral simulations based on the fictitious spin-1/2 and ZFS/e-Zeeman spin Hamiltonian are given in 

blue) and red, respectively. Microwave frequency used: 9.62541, peak-to-peak line width: 1.0 mT. Magnetic 

tensors: (component 1) gtrue = [1.7138, 1.6842, 1.5472], Atrue = [682.0, 679.0, 625.0] MHz, D = +10 cm–1, 

E/D = 0.007, Q = [–0.10, –2.20, 2.29] MHz, (component2) gtrue = [1.7087, 1.6793, 1.5572], Atrue = [681.0, 

684.0, 615.0] MHz, D = +10 cm–1, E/D = 0.007, Q = [–2.92, –3.34, 6.25] MHz. The g-, A-, D- and Q-tensors 

of the component 1 were collinear. The relative orientations of each tensor of the component 2 were based 

on the direction cosines shown in Table S3. Any strain of the line width is not included. The simulated spectra 

were obtained using EasySpin (ver. 5.1.10). 

  

×5 

×5 
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8.6 The powder-pattern ESR spectra observed at a liquid nitrogen temperature showing 

the dynamic Jahn-Teller distortion 

 
Figure S26 The randomly-oriented ESR spectrum of CoIIOEP diluted in the NiIIOEP single crystal observed 

at 77 K. A denotes the contribution of the appearance of the off-principal-axis extra line. The dominant 

contribution was due to a small amount of organic radical species. The spectrum was broadened in a 

dynamical regime, which originates in the dynamic Jahn-Teller effect.       

 

 

Figure S27 The single-crystal ESR spectrum of CoIIOEP observed at 4.2 K. Two sets of the hyperfine 

splitting patterns are due to the orientations of the energetically distinguishable molecules in the unit cell of 

the crystal lattice are observed for both the allowed and the forbidden transitions. The spectrum was observed 

with the static magnetic field oriented by 45 degrees from the a axis in the ab plane. The appearance of the 

difference in the intensity is due to non-equivalence of the weight of the two molecules. The experimental 

peak-to-peak line widths are in the range of 8 to 14 G.  

Magnetic Field/ 

A 

Magnetic Field/Gauss 
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8.7 2D electron spin transient nutation spectroscopy of CoIIOEP diluted in the NiIIOEP 

single-crystal  

 

Figure S28 2D contour plot of the electron spin transient nutation spectra of CoIIOEP diluted in the NiIIOEP 

single-crystal with B//z. Hamming window functions were applied to detect the original nutation spectra. 

Only the observed contour plot is given. The nutation frequencies show a subtle variation with respect to the 

nuclear spin transitions. The detailed analysis is underway.  
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9. Single-crystal ESR spectroscopy of a ReIII, IV dinuclear complex 

9.1 ESR experiments in the principal-axis system of the ReIII,IV dinuclear complex 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S29 (Top) The outer shape of the single crystal of the ReIII,IV dinuclear complex and Miller indexes. 

(Bottom) The angles of the designed wedges and the rotations around the principal axes. The plane angles 

were calculated from the X-ray crystallographic data and quantum chemical calculation for the principal axes 

of the magnetic tensors. The crystals were mounted on the (001) plane. 
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x 
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9.2 Angular dependence of the single-crystal ESR spectra of the ReIII,IV dinuclear complex 

 

 

Figure S30 Angular dependence of the single-crystal ESR spectra of the ReIII,IV dinuclear complex in the 

principal-axis (xyz) system. The principal axis was determined with the help of the theoretical calculations 

(Figure S34). In each plane, the angle giving the lowest resonance field is taken as the zero degree 

corresponding to B//x (in the xy-plane) and B//z (in the yz- and zx-planes), respectively. Frequency: 9.6369 

GHz, notating that for each orientation the accurate frequency was measured during the measurements, 

temperature: 3.2 K. 

 

 

 

 

 

 

 

 

 

Figure S31 Simulated spectra of the single-crystal ESR of the ReIII,IV dinuclear complex in the principal-axis 

system (simulated one in red). Magnetic parameters employed: gtrue = [2.060, 2.260, 1.820] (component 1), 

[2.060, 2.260, 1.720] (component 2), Atrue = [–1290, –850, –990] MHz, D = –350 GHz (–11.7 cm–1), E = 

97.23 GHz, E/D = 0.2778. Any strain effect of the line width is not included. The simulated spectra were 

obtained by using EasySpin (ver. 5.1.10). 

  

(a) In the xy-plane (b) In the yz-plane (c) In the zx-plane 

(a) In the xy-plane (b) In the yz-plane (c) In the zx-plane 
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9.3 Magnetic measurement (M-H plot) for the ReIII,IV dinuclear complex 

 
Figure S32 Experimental and simulated curves of the M-H plot for the ReIII,IV dinuclear complex. Black 

circle: experimental, red line: simulated. The principal values of the g-tensor (gx = 2.050, gy = 2.240, gz = 

1.820), and E/D = 0.2778 were used in this simulation, which were determine by the single-crystal 

spectroscopy. The value of D = –350 GHz (–11.7 cm–1) was derived from the simulation.  
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10. Quantum chemical calculations for magnetic tensors  

10.1 Quantum chemical calculations for the spin Hamiltonian parameters of FeIII(Cl)OEP 

and CoIIOEP 

Quantum chemical calculations of the spin Hamiltonian parameters including the g-tensor, 

D-tensor, A-tensor of 57Fe, 59Co, and 14N nuclei, and Q-tensor of 59Co nuclei were carried out 

by means of DFT. Because the ruffled structure of the porphyrin ring of OEP plays an important 

role on their electronic structures, we used the solid state geometry of the diamagnetic NiIIOEP 

host molecule as determined from the X-ray crystallography,[S6] by substituting the Ni atom to 

Fe or Co. The position of the Cl atom in FeIII(Cl)OEP was optimized at the UTPSS/Sapporo-

DZP level, and the Cartesian coordinates of all other atoms were fixed during the geometry 

optimization. The optimized Fe–Cl bond length is 2.413 Å. 

The magnetic tensors were calculated at the UTPSS/Sapporo-DZP level. In the D-tensor 

calculations the first order spin–spin dipolar contributions (DSS terms) were calculated by using 

the natural orbitals constructed from the unrestricted Kohn–Sham determinant, in conjunction 

with the McWeeny–Mizuno equation.[S7] The second order spin–orbit contributions (DSO terms) 

were evaluated by using the natural orbital-based Pederson–Khanna (NOB-PK) method[S8] with 

the one-electron spin–orbit Hamiltonian with effective nuclear charges. The NOB-PK method, 

which has recently been proposed by us, utilizes a single Slater determinant consisting of 

natural orbitals as the ground-state wavefunction in conjunction with the Pederson–Khanna 

(PK)-type determinant-based perturbation theory. The NOB-PK method gives more accurate 

DSO-tensors in [MnII(terpy)X2] (terpy = 2,2':6,2''-terpyridine, X = NCS, Cl, Br, and I), 

[MnII(tpa)X2] (tpa = tris-2-picolylamine, X = Cl, Br, and I), and (NBu4)2[ReIVX4(ox)] (ox = 

oxalate, NBu4 = tetra-n-butylammonium cation, X = Cl and Br) systems than the conventional 

PK[S9] and quasi-restricted orbital (QRO)[S10] approaches.  

The g-, A-, Q-, and DSS-tensors were calculated by using ORCA software (version 3.0.0),[S11] 

and the DSO-tensors were computed by means of GAMESS-US program suite[S12] and our 

laboratory-made source code.  

The electronic configuration in the spin-sextet ground state of FeIII(Cl)OEP is 

(dxz)
1(dyz)

1(dz
2)1(dx

2
−y

2)1(dxy)
1 without any ambiguity. However, determining the electronic 

configuration of the spin-quartet ground-state of CoIIOEP needs special care, because of the 

presence of low-lying excited electronic states arising from the ruffled structure of the 

porphyrin ring. In order to elucidate the electronic structure of the ground state of CoIIOEP, we 

have carried out 10 single point calculations with the different initial-guess 3d-electron 

configurations. According to the single point calculations the energy-lowest electronic 

configuration is (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1, but the electronic states having 

(dxz)
2(dyz)

1(dz
2)1(dx

2
−y

2)2(dxy)
1 and (dxz)

1(dyz)
2(dz

2)1(dx
2
−y

2)2(dxy)
1 configurations are calculated to 

be at 273 and 274 cm−1, respectively, above the ground state. Here, we defined the x and y axes 

to be parallel to the direction connecting cobalt and meso-carbon atoms and the z axis to be 
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parallel to the pseudo-S4 axis. The quasi-degeneracy of these two electronic states is rationalized 

from the pseudo-S4 symmetry of CoIIOEP. The electronic state described as 

(dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 configuration, expected from the crystal field of the square planar 

coordination, is calculated to be at 1909 cm−1 higher in energy than the ground state. Note that 

other spin-quartet electronic states are calculated to have higher energy (E > 20 000 cm−1) 

than the ground state at the UTPSS/Sapporo-DZP level.  

Because the low-lying electronic states are energetically very close to each other and it is 

hard to determine the ground state electronic configuration only from the DFT calculations, we 

also carried out the CASSCF(7e,5o)/6-31G* calculations for CoIIPor (Por = porphyrin) 

molecule. The molecular geometry of CoIIPor was prepared from the solid state geometry of 

NiIIOEP, by substituting Ni to Co, and the ethyl groups to the H atoms. The CASSCF active 

space consists of valence 3d orbitals and electrons. During the SCF calculation state averaging 

is done for 10 spin-quartet states. According to the CASSCF calculation, the lowest quartet 

state is described mainly by the (dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 configuration with the expansion 

coefficient C = 0.99. The first and second excited quartet states are located to be at 717 cm−1 

and 718 cm−1, respectively, higher in energy above the ground state. Both the first and second 

excited quartet states have multiconfigurational character and the main configurations are 0.80 

[(dxz)
2(dyz)

1(dz
2)2(dx

2
−y

2)1(dxy)
1] +0.58 [(dxz)

1(dyz)
2(dz

2)1(dx
2
−y

2)2(dxy)
1] and 0.81 

[(dxz)
2(dyz)

1(dz
2)1(dx

2
−y

2)2(dxy)
1] −0.58 [(dxz)

1(dyz)
2(dz

2)2(dx
2
−y

2)1(dxy)
1], respectively. The third 

excited quartet state is described mainly by the (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 configuration, 

which is the energy-lowest configuration in the UTPSS/Sapporo-DZP single point calculations. 

The excitation energy of the third excited quartet state is 2522 cm−1 at the CASSCF level. From 

the DFT and CASSCF calculations, we expect that the ground state electronic configuration 

must be (dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 or (dxz)

1(dyz)
1(dz

2)2(dx
2
−y

2)2(dxy)
1 and we have carried out 

the magnetic tensor calculations for these two electronic configurations.  

The spin density distributions of FeIII(Cl)OEP and CoIIOEP are plotted in Figure S33 with an 

isosurface value is set to be 0.005, and Mulliken atomic spin densities on the metal center, 

chlorine, and nitrogen atoms are summarized in Table S6. In both molecules most of unpaired 

electrons are located on the metal center, and non-negligible amounts of spin densities are 

distributed onto the coordinated chlorine and nitrogen atoms.  
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Figure S33 Spin density distributions of FeIII(Cl)OEP (left) and CoIIOEP (center: 

(dxz)1(dyz)1(dz
2)2(dx

2
−y

2)2(dxy)1 configuration, right: (dxz)2(dyz)2(dz
2)1(dx

2
−y

2)1(dxy)1 configuration) calculated at 

the UTPSS/Sapporo-DZP level of theory. 

 

Table S6 Mulliken atomic spin densities of FeIII(Cl)OEP and CoIIOEP calculated at the UTPSS/Sapporo-

DZP level  

Molecule FeIII(Cl)OEP CoIIOEP 

Electronic  

configuration 

(dxz)
1(dyz)

1(dz
2)1 

(dx
2
−y

2)1(dxy)
1 

(dxz)
1(dyz)

1(dz
2)2 

(dx
2
−y

2)2(dxy)
1 

(dxz)
2(dyz)

2(dz
2)1 

(dx
2
−y

2)1(dxy)
1 

Metal center 3.966 2.522 2.668 

Cl 0.329   

4N 0.376 0.205 0.331 

 

The calculated magnetic tensors of FeIII(Cl)OEP and CoIIOEP are summarized in Table S7. 

In FeIII(Cl)OEP the D-, g-, A(57Fe)-tensors are roughly coaxial. The Dzz axis is nearly parallel 

to the Fe–Cl bond. The Dxx axis is approximately parallel to the direction connecting Fe and the 

carbon atom at the meso position. The DSS contribution to the D value is about 600 MHz and 

therefore the DSO term is dominant. The analysis of the theoretical DSO-tensor based on the 

orbital region partitioning technique (ORPT) revealed that the most important excitation on the 

DSO contributions are dx
2
−y

2 () → dxy() excitation, which raises the Dzz principal value by 

about 3 × 105 MHz. The dx
2
−y

2 () → dyz() and dx
2
−y

2 () → dxz() excitations contribute mainly 

to the Dxx and Dyy principal values, respectively, which act to decrease the D value by about 0.7 

× 105 MHz. The g-tensor is slightly shifted positively from the g value of free electron (2.0023) 

but the shift is small compared with that of CoIIOEP. The A(57Fe)-tensor has small anisotropy 

reflecting the d5 high-spin electronic configuration.  

In CoIIOEP of the (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 electron configuration, the negative DSS+SO 

value is predicted. The Dzz axis is perpendicular to the porphyrin ring. According to the ORPT, 

the most important excited electronic configurations are dxy() → dyz() and dxy() → dxz(). 

These excitations work to raise Dxx and Dyy principal values, as discussed in the DSO-tensor 

analysis of FeIII(Cl)OEP. The A(59Co)-tensor has very small anisotropy reflecting the electronic 

configuration.  

In the DSO-tensor calculation of CoIIOEP in (dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 electronic 
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configuration we have encountered difficulties in the DFT-based approach. In the single 

determinant comprised of natural orbitals the highest occupied spin- (dxy) orbital has higher 

energy than the lowest unoccupied spin- (dx
2
−y

2) orbital ((dxy)() = −0.111576 Hartree and 

(dx
2
−y

2)() = −0.114939 Hartree). This means that the spin-doublet excited configuration has 

lower energy than the spin-quartet state, although in the CASSCF calculations the 

(dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 spin-quartet state is the ground state. The theoretical DSO value 

calculated based on the NOB-PK method is −5.496 × 106 MHz. However, the ORPT analysis 

revealed that the dxy() → dx
2
−y

2 () excited configuration contributes dominantly to the DSO 

value (−5.664 × 106 MHz), which has the abovementioned negative orbital energy difference. 

If this excited spin-doublet configuration has positive orbital energy difference like in the 

CASSCF energy orderings, the sign of the DSO value becomes positive. We note that such 

orbital energy order inversion occurs in the Kohn–Sham orbital of both FeIII(Cl)OEP and 

CoIIOEP, and therefore the DSO values of FeIII(Cl)OEP and CoIIOEP of 

(dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 configuration calculated by means of the conventional PK method 

has the opposite absolute sign to those calculated by NOB-PK.  

In order to estimate DSO-tensor of CoIIOEP in (dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 configuration 

other than the DFT-based methods, we have adopted spin–orbit CI (SO-CI) based on the 

CASSCF(7e,5o)/6-31G* wavefunction in the CoIIPor system. In the SO-CI calculations we 

used the 50-state-averaged (40 doublets and 10 quartets) CASSCF wavefunctions as the non-

relativistic wavefunctions. The DSO and ESO values are calculated directly from the energy 

differences between spin sublevels. The obtained DSO value is positive as expected (DSO = 

+2.174 × 106 MHz), and the ESO value is less than 1 MHz. Note that at the SO-CI method the 

DSO value of (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 configuration (the third excited quartet state) is 

−7.725 × 105 MHz, which is close to the NOB-PK-based theoretical value.  

The A(59Co)-tensor of CoIIOEP in (dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1 configuration calculated at 

the UTPSS/Sapporo-DZP shows large axial anisotropy: Axx ~ Ayy > Azz, because two unpaired 

electrons occupy in-molecular-plane orbitals (dx
2
−y

2 and dxy orbitals). Since the dx
2
−y

2 orbital is 

doubly occupied in (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 configuration and singly occupied in 

(dxz)
2(dyz)

2(dz
2)1(dx

2
−y

2)1(dxy)
1, the smaller Q-tensor is obtained in (dxz)

2(dyz)
2(dz

2)1(dx
2
−y

2)1(dxy)
1 

configuration than in (dxz)
1(dyz)

1(dz
2)2(dx

2
−y

2)2(dxy)
1 reflecting the occupation number.  
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Table S7 Magnetic tensors calculated at the UTPSS/Sapporo-DZP level.  

Molecule FeIII(Cl)OEP CoIIOEP 

Electronic 

configuration 

(dxz)
1(dyz)

1(dz
2)1 

(dx
2
−y

2)1(dxy)
1 

(dxz)
1(dyz)

1(dz
2)2 

(dx
2
−y

2)2(dxy)
1 

(dxz)
2(dyz)

2(dz
2)1 

(dx
2
−y

2)1(dxy)
1 

DSS+SO/MHz +2.301 × 105 −6.403 × 105 +2.174 × 106 [a] 

ESS+SO/DSS+SO 0.0481 0.0015 0.0000 [a] 

gxx 2.0149 2.0792 2.0948 

gyy 2.0166 2.0793 2.0947 

gzz 2.0075 2.0226 2.0093 

giso 2.0130 2.0604 2.0663 

Axx(M)/MHz 20.97 148.01 352.68 

Ayy(M)/MHz 22.24 148.08 352.66 

Azz(M)/MHz 18.38 148.49 158.02 

aiso(M)/MHz 20.53 148.19 287.79 

Axx(
14N)/MHz [b] 11.20 15.88 17.17 

Ayy(
14N)/MHz [b] 7.95 12.04 12.85 

Azz(
14N)/MHz [b] 9.00 12.40 13.80 

aiso(
14N)/MHz 9.38 13.44 14.61 

Qxx(
59Co)/MHz  −2.773 −0.768 

Qyy(
59Co)/MHz  −2.767 −0.764 

Qzz(
59Co)/MHz  5.540 1.532 

[a] The spin–orbit CI result in CoIIPor using CASSCF(7e,5o)/6-31G* wavefunctions as the non-relativistic 

wavefunctions. [b] The Axx(14N) axis is parallel to the M–N coordination bond, Azz(14N) axis is perpendicular 

to the molecular plane.   
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10.2 Quantum chemical calculations for the spin Hamiltonian parameters of the ReIV-

monomer 

In the ReIII,IV dinuclear mixed-valence complex under study the ReIII site (d4) is spin-singlet 

and we focused on the lowest spin-quartet (S = 3/2) state of the ReIV-monomer for the magnetic 

tensor calculations. The DFT calculations of the g- and D-tensors, and A-tensor of the Re atom 

of the ReIV-monomer were carried out by using TPSS exchange–correlation functional in 

conjunction with the Sapporo-DKH3-DZP-2012 and Sapporo-DZP-2012 basis sets for Re and 

the other atoms, respectively. We used the solid state geometry of the ReIV monomer in the 

mixed-valence complexes determined from the X-ray crystallography. In the SCF procedure 

we used the second-order Douglas–Kroll–Hess Hamiltonian[S13] to include relativistic effects. 

The DSS- and DSO-tensors were calculated using the same procedure as the calculations in 

FeIII(Cl)OEP and CoIIOEP.  

The electronic configuration of valence 5d orbitals in the ground state of the ReIV-monomer 

is (dxz)
1(dyz)

1(dx
2
−y

2)1(dz
2)0(dxy)

0, as expected from the crystal field of the octahedral 

coordination. The definition of the axis (which is identical to the principal axis of the theoretical 

DSS+SO-tensor) is given in Figure S34, together with the spin density distribution obtained from 

the single point calculation. Unpaired electrons distribute mainly onto the ReIV center but 

delocalizes onto the Cl− and bim2− groups. According to the Mulliken population analysis the 

Re atom carries 2.342 of unpaired electrons, and the two Cl− and bim2− groups hold 0.325 and 

0.374, respectively, of the delocalized spins. Spin densities on the PnPr3 groups are very small 

(−0.041).  

 

 

Figure S34 Spin density distributions of ReIV-monomer. 

 

The calculated DSS+SO value is −1.730 × 106 MHz, and the |ESS+SO/DSS+SO| value is 0.205. As 

expected, the spin–orbit term dominantly contributes to the D-tensor and spin–spin dipolar 

contribution is about 0.2% in the DSS+SO-tensor. The large E/D value indicates the departure 

from the axial symmetry. Such a large E/D value is also observed in [ReIVX4(ox)]2− systems (X 
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= Cl and Br).[S14]  

The g- and A(187Re)-tensors are nearly coaxial to the DSS+SO-tensor (deviations are less than 

4°). At the present calculation the principal value of the g-tensor is gxx = 1.9806, gyy = 2.0138, 

gzz = 2.0345, (giso = 2.0096). The anisotropic nature of the g-tensor is consistent with the non-

symmetric spin–orbit coupling and hence non-axial-symmetric D-tensor. By contrast, the 

A(187Re)-tensor is rather symmetric (Axx = −3135.02 MHz, Ayy = −3119.34 MHz, Azz = −3103.09 

MHz. aiso = −3119.15 MHz), reflecting the 5d3 electron configuration and spin density 

distributions.  
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11. Experiments  

Single-crystals of diamagnetic NiIIOEP well incorporating FeIII(Cl)OEP (S = 5/2) were 

prepared, in which actual guest/host concentration ratios were not determined. The detailed 

preparation process of the magnetically diluted sizable single-crystals will be given elsewhere. 

The Miller indexes of the single-crystal were assigned to the crystal planes of a square-

bipyramidal structure.[S6] Based on the assignment of the Miller indexes an oxygen-free copper 

wedge was designed and prepared for ESR/ENDOR experiments in the principal-axis 

coordinate systems. Fortunately, the bipiramidal plane coincides with the square plane 

composed of the four nitrogen nuclei of the porphyrin skeleton, and an angle between the crystal 

a-axis (or the b-axis) and the direction of the diagonal nitrogen nuclei is only 2 degrees, as 

shown in Figure S33. The error of the plane angles of the wedge was less than 0.2 degrees. All 

the experiments including pulsed ESR and electron spin transient nutation spectroscopy at X-

band were carried out at liquid helium temperatures except otherwise specified. 

Conventional CW ESR experiments were carried out with a Bruker ESP300/350 X-band 

ESR Spectrometer equipped with a dual mode resonator ER4116DM, in which the ESR 

measurements were achieved in a not only conventional perpendicular mode (B⊥B1: B denotes 

the static magnetic field and B1 the microwave oscillating field) but also a parallel excitation 

mode (B//B1). The parallel mode allows the fine-structure/hyperfine forbidden transitions 

allowed. Temperature was controlled with an Oxford ESR910 helium-gas flow temperature 

controller system. CW X-band ENDOR measurements in the principal-axis coordinate systems 

were carried out with the ESP350 based spectrometer equipped with a single-circle goniometer. 

Single-crystal X-band pulsed-ESR spectroscopy was carried out with ESP300/380E 

(BrukerBioSpin) spectrometer equipped with a 1 kW TWT microwave amplifier. The relative 

phase and the intensity of microwave pulses were adjusted by using a high speed oscilloscope 

9450A, 300 MHz (Lecroy). The microwave frequency was monitored with a frequency counter 

R5373 (Advantest). The temperature was regulated with a helium-gas flow controller systems 

(Oxford). Echo-detected field-swept ESR spectra were obtained with the conventional pulse 

sequence: π/2–τ–π–τ–echo with π/2 = 30 ns, π = 60 ns and τ = 300 ns. Electron spin transient 

nutation spectroscopy for the metalloporphyrins was carried in the echo-detected scheme with 

a pulse sequence of the nutation pulse–t0–π/2–τ–π–τ–echo, where the nutation pulse was 

changed from 16 to 512 ns in the step of 4 ns with π/2 = 30 ns, π = 60 ns, t0 = 40 ns and τ = 300 

ns. 

Magnetic susceptibilities were measured with Quantum Design Superconducting Quantum 

Interference Device (SQUID) magnetometer MPMS-XL in the temperature range 1.9–298 K at 

an applied magnetic field of 100 mT.[S15] Corrections for molecular diamagnetism, estimated 

from Pasacal’s constants, were applied.[S15] In order to increase the accuracy of the data, the 

susceptibility measurements were carried out at 400 and 500 mT, and the susceptibility was 

obtained with the slope of these points. Calculations of Mp and χp were carried out with 
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laboratory-build programs on MATLAB R2014b. The accuracy of the calculation was 

examined by comparing with the analytical solution for S = 3/2.[S16] Additional contributions 

from a thermally accessible excited (triplet, S = 1) state of the trivalent rhenium moiety were 

taken into account, where the principal values of the g-tensor were taken from the theoretical 

values (gxx = 2.033, gyy = 2.009, gzz = 2.014), and the D-value of the triplet state and the 

excitation energy J between the ground singlet and triplet state were optimized.  

The host crystal of Ni(II)OEP is a tetragonal bipyramidal with the space group I41/a, Z = 4, a = 

b = 1.493(1) nm, c = 1.384(1) nm as determined by Mayer[S6] and the crystal has a habit of well-

developed planes with Miller indexes, (100) (minor), (010) (minor), (001) (minor), (-100) 

(minor), (0-10) (minor), (00-1) (minor), (101), (011), (0-11), (-101), (01-1), (10-1), (0-1-1), (-

10-1). 

The host NiIIOEP molecule has a slightly ruffled structure of the porphyrin plane with S4 

symmetry. The molecular principal-axis system of the crystal nearly coincides with the 

crystallographic-axis system. It facilitates the spectral analyses for the observed ESR/ENDOR 

spectra, giving good accuracy of the determined tensors. The experimental error of setting the 

crystals of NiIIOEP in the cavity was estimated within 0.5 degrees. The c-axis of the crystal is 

perpendicular to the porphyrin plane, while the N–N directions are nearly parallel to the a or b 

axis. An oxygen-free copper wedge was used for mounting the crystal. 

 

 

 

Figure S35 The molecular structure and the principal axes used for the experiments. Note that the theoretical 

principal x- or y-axis is along the nearest neighboring N–N direction.  

 

References 

[S1] B. Bleaney and K. D. Bowers, Anomalous Paramagnetism of Copper Acetate, Proc. Roy. 

Soc. A, 1952, 214, 451–465. 

[S2] J. W. Orton, Electron Paramagnetic Resonance: An Introduction to Transition Group Ions 

in Crystals, Gordon and Breach, 1968. 

[S3] C. Rudowicz and R. Bramley, On Standardization of the Spin Hamiltonian and the Ligand 

Field Hamiltonian for Orthorhombic Symmetry, J. Chem. Phys., 1985, 83, 5192–5197. 

[S4] R. Kripal, D. Yadav, P. Gnutek and C. Rudowicz, Alternative Zero-Field Splitting (ZFS) 

Parameter Sets and Standardization for Mn2+ Ions in Various Hosts Exhibiting Orthorhombic 

Site Symmetry, J. Phys. Chem. Solids, 2009, 70, 827–833. 

101 011 

10-1 
01-1 

-101 001 
0-11 

100 
0-10 

0-10 

-100 

-10-1 

a 

b 

c 



S83 

 

[S5] J. R. Pilbrow, Effective g Values for S = 3/2 and S = 5/2, J. Magn. Reson., 1978, 31, 479–

490. 

[S6] E. F. Mayer, Jr. The crystal and molecular structure of nickel(II)octaethylporphyrin. Acta 

Crystallogr., Sect. B, 1972, 28, 2162–2167. 

[S7] R. McWeeny, Y. Mizuno, The density matrix in many-electron quantum mechanics II. 

Separation of space and spin variables; spin coupling problems. Proc. R. Soc. London, Ser. A, 

1961, 259, 554–577; S. Sinnecker, F. Neese, Spin-spin contributions to the zero-field splitting 

tensor in organic triplets, carbenes, and biradicals—A density functional and ab initio study. J. 

Phys. Chem. A, 2006, 110, 12267–12275.  

[S8] K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, T. Takui, Quasi-restricted orbital treatment for 

the density functional theory calculations of the spin–orbit term of zero-field splitting tensors. 

J. Phys. Chem. A, 2016, 120, 9857–9866. 

[S9] M. R. Pederson, S. N. Khanna, Magnetic anisotropy barrier for spin tunneling in Mn12O12 

molecules. Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 60, 9566–9572. 

[S10] F. Neese, Importance of direct spin–spin coupling and spin-flip excitations for the zero-

field splittings of transition metal complexes: A case study. J. Am. Chem. Soc., 2006, 128, 

10213–10222.  

[S11] F. Neese, The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 

2, 73–78. 

[S12] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. 

Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, 

General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14, 

1347−1363. 

[S13] B. A. Hess, Relativistic electronic-structure calculations employing a two-component no-

pair formalism with external-field projection operators. Phys. Rev. A, 1986, 33, 3742–3748. 

[S14] J. Martínez-Lillo, T. F. Mastropietro, E. Lhotel, C. Paulsen, J. Cano, G. De Munno, J. 

Faus, F. Lloret, M. Julve, S. Nellutla, J. Krzystek, Highly anisotropic rhenium(IV) complexes: 

New examples of mononuclear single-molecule magnets. J. Am. Chem. Soc., 2013, 135, 13737–

13748. 

[S15] G. P. Bernardini, D. Borrini, A. Caneschi, F. Di Benedetto, D. Gatteschi, S. Ristori and 

M. Romanelli, EPR and SQUID Magnetometry Study of Cu2FeSnS4 (Stannite) and Cu2ZnSnS4 

(Kesterite), Phys. Chem. Minerals, 2000, 27, 453–461. 

[S16] R. Boča, Current Methods in Inorganic Chemistry, vol. 1, Theoretical Foundations of 

Molecular Magnetism, Elsevier, 1999. 

 


