Electronic Supplementary Information

Anisotropic carrier mobility in buckled two-dimensional GaN

Lijia Tong,
Junjie He,
Min Yang,
Zheng Chen,*
Jing Zhang,
Yanli Lu
and Ziyuan Zhao*

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China. E-mail: chenzh@nwpu.edu.cn

Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic

School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China. E-mail: zhao.ziyuan@outlook.com
Figure S1. Phonon band structures of HGaNH (orthogonal super cell).
Figure S2. The fitted curves of $E(k)$ of FGaNH, where $E(k)$ is the energy of $k$ states around the conduction band minimum (CBM) or valence band maximum (VBM) in the first Brillouin zone, for calculate the corresponding effective masses ($m^* = \frac{\hbar^2}{\partial^2 E(k)/\partial k^2}$) of FGaNH. (a, b) for calculate the electron $m^*$ along $a_{ox}$ and $a_{oy}$ directions. (c, d) for calculate the hole $m^*$ along $a_{ox}$ and $a_{oy}$ directions. Note that the "0.00 point" in the horizontal axis represent CBM or VBM.

According to the definition of effective mass, we first calculate the relationship of $E(k)$ around CBM/VBM in FGaNH (Fig. S2). Then fitting (quadratic fit) the $E(k)$-$k$ curves (Fig. S2) and $m^*$ is obtained through substituting the quadratic function into the
formula \( m^* = \hbar^2 [\partial^2 E(k)/\partial k^2]^{-1} \). Although the "Adj. R-Suqar" of fitted \( E(k)-k \) curves (Fig. S2) is nearly close to 1 which verifies the validity of the fitting results, the tiny "Standard Error" (0.002~0.009) is also existed. However, according to the report of Wei Ji et al. [11], a fitting error of 20% is definitely reasonable considering the accuracy limit of DFT when calculating carrier mobility. Thus, the tiny "Standard Error" ought to have no significant influence on our principal results (the anisotropic \( \mu \)).

Figure S3. The density of states (DOS) of FGaNH. The right panel shows the enlarged detail around CBM or VBM.
Figure S4. The partial density of states (PDOS) of in-plane N atoms and Ga atoms which constitute the major part of CBM (a and b) and VBM (c and d) in FGaNH.

In order to clarify which atoms contribute to the CBM or VBM in FGaNH, the TDOS of each atoms is shown in Fig. S3. Fig. S3 unambiguously illustrates that the CBM of HGaNH mainly stems from the out-plane F atoms (minor) and in-plan N and Ga atoms.
(major), while the VBM of FGaNH only origins from the in-plane N atoms (major) and Ga atoms (minor). Furthermore, to clarify which orbitals of the atoms associated with CBM/VBM of FGaNH, the PDOS of the corresponding atoms are shown in Fig. S4. Fig. S4 (a-c) show that the CBM of FGaNH mainly stems from in-plane orbitals (N-$s$ and Ga-$s$) and out-plane orbitals (F-$s$+$p_z$), while (d) and (e) reveal that the VBM of FGaNH mainly stems from perpendicular (relative to the Ga-N plane) N-$p_x$ orbitals (major) and Ga-$p_x$ orbitals (minor).

![Figure S5](image.png)

**Figure S5.** The density of states (DOS) of HGaNH. The right panel shows the enlarged detail around CBM or VBM.

Similarly, the TDOS and PDOS of each atoms associated with the CBM and VBM of HGaNH are shown in Fig. S5 and S6. As seen in Fig. S5 and S6, the CBM of HGaNH mainly stems from in-plane N and Ga atoms ($s$ and $p_z$ orbitals) and out-plane $H_{Ga}-s$
orbitals, while the VBM of HGaNH mainly stems from perpendicular (relative to the Ga-N plane) N-$p_x$, $p_y$ orbitals (major) and Ga-$p_x$, $p_y$ orbitals (minor).

**Figure S6.** The partial density of states (PDOS) of all the atoms which constitute the major part of CBM (a-c) and VBM (d and e) in HGaNH.
It's well known that metal contacting, which is always needed when using 2d materials in real devices [30-36], is a crucial factor to affect the performance of 2d materials [30-36]. However, the formula to calculate $\mu_{2d}$ have some constraints [14, 24-25] and they are very difficult to extract reasonable data to quantitatively calculate the $\mu_{2d}$ of non-freestanding (means containing metal contacting) 2d materials. In addition, considering that there is no referable example for the metal contacting of pure (or fully-functionalization) monolayer GaN, we elaborately select the Ti(0001) electrode which is used to assemble nanodevices to qualitatively research this issue [29-35]. Based on this, a HGaNH/Ti(0001) heterostructure is built (Fig. S7). After geometry optimization (Fig. S7), there is no chemical bond between HGaNH and Ti(0001) electrode, indicating just a physical absorption. Thus, it is reasonable to assume that the $C_{2d}$ of HGaNH does not significant change since HGaNH is physically absorbed on Ti(0001) surface (Fig. S7),
then the remaining key factors associated with $\mu_{2d}$ are $E_1$ an $m^*$. According to the formula of effective mass ($m^* = \hbar[\partial^2 E(k)/\partial^2 k]^{-1}$), $m^*$ is directly related to the dispersion relation ($E(k)$-k cures) around CBM\VBM, so, to qualitatively inspect the change of $E(k)$-k cures, the decorated bandstructures of HGaNH/Ti(0001) heterostructure are shown in Fig. S8. Comparing Fig. S8a (the red lines) and Fig. 2b, the $E(k)$-k cures around VBM and quasi-VBM are similar, indicating the major hole $m^*$ features of HGaNH should not bear dramatic change when the Ti(0001) electrode is added. In contrast to the similar VBM (or quasi-VBM) $E(k)$-k cures, the quasi-CBM $E(k)$-k cures of HGaNH in HGaNH\Ti(0001) are evidently different from that of free-standing HGaNH, implying the electron $m^*$ of HGaNH in HGaNH\Ti(0001) have changed compared with that of pure HGaNH.

Furthermore, the wavefunction of quasi-CBM and quasi-VBM are calculated and plotted in Fig. S9. The wavefunction distribution (mainly stems from N-$p_xp_y$ orbitals) of quasi-VBM (Fig. S9b) resembles that of pure HGaNH (Fig. 4c), not only verifying the robust hole $m^*$ (as mentioned above) but also demonstrating $E_1$ (also $m^*$) maintains its major features although HGaNH interacts with the Ti(0001) electrode. Similarly, although the CBM of HGaNH\Ti(0001) (Fig. S9a) maintain the characteristics of pure HGaNH (Fig. 3c) to some extent, the Ti atoms make a nonnegligible contribution to the quasi-CBM of HGaNH within HGaNH\Ti(0001), demonstrating $E_1$ (also $m^*$) ought to bear dramatic change when the Ti(0001) electrode is added. Thus, it is reasonable infer that the major hole $\mu$ features (isotropy or anisotropy) of HGaNH ought to be relatively robust about Ti electrode, while its electron $\mu$ features are susceptible to the Ti(0001) electrode.
Figure S8. Band structure of HGaNHTi(0001) heterostructure: (a) Spin up; (b) Spin down. The red color indicates the weight of a projection of the wave functions on the HGaNH sites.

Figure S9. The charge densities (top and side view) of HGaNHTi(0001) heterostructure. (a) for the quasi-CBM of HGaNH shown in Fig. S8a and (b) the quasi-VBM of HGaNH shown in Fig. S8a. The isosurface level is set at 0.02 e/Å^3.
Figure S10. Temperature dependence of hole and electron mobilities along $a_{ox}$ and $a_{oy}$ directions for FGaNH.

References


