
The adsorption of Cu on the CeO₂(110) surface

Arunabhiram Chutia,^{*1,2} Emma K. Gibson,^{1,2} Matthew R. Farrow,² Peter P. Wells,^{1,3,4} David O. Scanlon,^{2,4} Nikos Dimitratos,⁵ David J. Willock,⁵ C. Richard A. Catlow^{*1,2,5}

¹UK Catalysis Hub, RCaH, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.
²UCL Chemistry, Gordon Street, London, WC1H 0AJ, UK.
³School of Chemistry, University of Southampton, Southampton, 50718J, UK.
⁴Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
⁵Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.

Email: a.chutia@ucl.ac.uk, c.r.a.catlow@ucl.ac.uk

To construct models of CeO₂ with Cu(II) incorporated, we substitute a Ce atom with a Cu²⁺ ion either on the surface using the CeO₂(110) slab representation or in the bulk material and create an oxygen vacancy for charge compensation. We refer to the Cu²⁺ ions replacing surface and bulk ceria as Cu_{srf} and Cu_{blk} respectively. On visualizing the calculated spin density of these systems we see that it is highly localized around the Cu centres and nearby O-atoms in both bulk and surface substitution positions, (Figure S1). The shape of this spin density indicates that there is bonding between Cu d and O p-orbitals.

Figure S1. Spin-density localised around Cu–O moiety (a) on the surface of $CeO_2(110)$. The $O_{n(=1-4)}$ represents the O-atoms in close proximity of Cu-atoms. (b) Spin-density localised around Cu–O moiety in the bulk of CeO_2 .