Electronic Supplementary Information (ESI)

Enhanced, Robust Light-Driven \(\text{H}_2 \) Generation by Gallium Doped Titania Nanoparticles

Si Luo,a,b Thuy-Duong Nguyen-Phan,a,† Dimitriy Vovchok,a,b Iradwikanari Waluyo,c
Robert Palomino,a Andrew D. Gamalski,d Laura Barrio,e Wenqian Xu,f Dmitry E. Polyansky,a José A. Rodrigueza,b and Sanjaya D. Senanayakea,∗

a Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, US
b Department of Chemistry, Stony Brook University, Stony Brook, NY 11790, US
c Photon Sciences Division, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, US
d Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, US
e CSIC - Instituto de Catalisis y Petroleoquimica Cantoblanco, E-28049 Madrid, Spain
f X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, US

* E-mail: nguyenphanthuyduong@gmail.com (T.-D. N.-P.), ssenanay@bnl.gov (S. D. S).
† Current affiliation: National Energy Technology Laboratory, AECOM, Pittsburgh, PA 15236, US. Email: ThuyDuong.NguyenPhan@netl.doe.gov
Electronic Supplementary Information (ESI) available: Detailed experiment of chopped photocurrent response measurement and Fig. S1-S4 include Rietveld refinement of Ga-doped TiO$_2$ samples, XRD patterns of Pt loaded Ga-doped TiO$_2$, time profiles of water splitting reaction, performance comparison with and without Pt co-catalyst, and transient photocurrent response of Pt loaded photocatalysts during light on/off cycles. See DOI: 10.1039/x0xx00000x

Photocurrent response measurement

The photocurrent response was monitored on a Basi Epsilon potentiostat using a three-electrode cell and a 150 W Xenon arc lamp (with aqueous CuSO$_4$ filter, 310 nm < λ < 625 nm) as the excitation source. The reference and counter electrodes were Ag/AgCl and Pt wire, respectively, while 0.1 M HClO$_4$ aqueous solution was used as the electrolyte. A PTFE-coated carbon paper (1.2 cm x 3 cm) coated with oxide material was employed as the working electrode (illuminated area of 0.785 cm2). The working electrode was prepared by electrophoretic deposition using a Keithley 2410A electrometer at the Center for Functional Nanomaterials (BNL). The voltage (120 V) was automatically applied during 5 min depositing a suspension of powder and methanol. After drying at 80 °C, the electrode (circle geometry with 1 cm diameter) was finally annealed at 450 °C for 2 h prior to photoelectrochemical analysis. The on−off light-switching measurement was conducted at 1.25 V (vs. Ag/AgCl) by irradiating the front side of working electrode.
Fig. S1. Rietveld refinement of Ga-doped TiO$_2$ samples.
Fig. S2. XRD patterns of Pt/3.125GaTi and Pt/12.5GaTi samples.
Fig. S3. Time profiles of H₂ evolution over undoped and Ga-doped TiO₂ (A) without and (B) with Pt cocatalyst under UV-Vis irradiation (λ = 310-625 nm).
Fig. S4. (A) Comparison between cocatalyst-free and Pt-assisted H$_2$ evolution activity over undoped and Ga-doped TiO$_2$; (B) Transient photocurrent response of Pt/TiO$_2$ and Pt/Ga-doped TiO$_2$ during on/off cycles of 150 W Xe lamp illumination ($\lambda = 310$-625 nm).