Supporting Information

DFT Study on the Mechanism of Photoselective Catalytic Reduction of 4-Bromobenzaldehyde in Different Solvents Employing OH-defected TiO₂ Cluster Model

Hanlin Gan, Liang Peng*, Feng Long Gu*

Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education,

School of Chemistry & Environment, South China Normal University, Guangzhou, China

*pengliang@m.scnu.edu.cn

*gu@scnu.edu.cn

Free energy profiles of some unfavourable pathways of Photoselective Catalytic Reduction of 4- Bromobenzaldehyde

The debromination and carbonyl reduction of IM2 in CH_3CN are unfavourable. The free energy profile is depicted in Figure S1.

Figure S1: Free energy profile of unfavourable photocatalytic reduction pathway of Bronsted-site adsorbed 4-BBA in CH₃CN. The relative free energies are given in kilocalories per mole while the bond lengths are given in angstrom.

Because of the high barriers and endothermicity, the debromination of 3[e⁻] is not dominant. In addition, if the two extra electrons are in pairs, the debromination of 3[2e⁻] is impossible to occur kinetically (Figure S2).

Figure S2: Free energy profile of unfavourable photocatalytic reduction pathway of Lewis-site adsorbed 4-BBA in CH₃CN. The relative free energies are given in kilocalories per mole while the bond lengths are given in angstrom.

The debromination could not compete thermodynamically and kinetically with carbonyl reduction in C_2H_5OH even though the two-electron debromination is effective in CH_3CN (Figure S3).

Figure S3: Free energy profile of debromination of Bronsted-site adsorbed 4-BBA in C_2H_5OH without adsorbed solvent molecule. The relative free energies are given in kilocalories per mole while the bond lengths are given in angstrom.

1.95

1.759

0.0

1[2e]

1.950

1.765 1.010

0.0

-5.0

Even though the adsorbed C_2H_5OH could make contribution to transferring the electron from cluster to 4-BBA, the debrominations still have high barriers, which indicates that the debrominations are not the favourable reaction in C_2H_5OH . The free energy profiles are in Figure S4 where TS16, IM19, TS17, and IM20 are not mentioned in Scheme 4.

Figure S4: Free energy profile of debromination of adsorbed 4-BBA in C_2H_5OH with Bronstedand Lewis-site adsorbed solvent molecule. The relative free energies are given in kilocalories per mole while the bond lengths are given in angstrom.

 $[Ti_3O_9H_5]^- \mbox{ could be recovered by different hydrogen sources, so the complete consumption of } OH_cs would not be concerned. \label{eq:General}$

Figure S5: Free energy profile of proton and H atom transfer of $[Ti_3O_9H_5]^-$ in C₂H₅OH through C₂H₅OH and •CH(CH₃)OH radical respectively. The relative free energies are given in kilocalories per mole while the bond lengths are given in angstrom.