Application of Spin-Ratio Scaled MP2 for the prediction of intermolecular interactions in chemical systems

Samuel Y. S. Tan, a Luke Wylie, a Ivan Begic, a Dennis Tran, a Ekaterina I. Izgorodina a, *

School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria, 3800 AUSTRALIA
Corresponding author: katya.pas@monash.edu

Supplementary Information
Table S1. c_{OS} and c_{SS} coefficients in the SRS-MP2 method with best performing basis sets, cc-pVTZ and cc-pVQZ.

<table>
<thead>
<tr>
<th>Basis set</th>
<th>ε_{cd}</th>
<th>c_{OS}</th>
<th>c_{SS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc-pVTZ</td>
<td>≥ 1</td>
<td>1.640</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>< 1</td>
<td>0.660</td>
<td>1.140</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>≥ 1</td>
<td>1.689</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>< 1</td>
<td>0.671</td>
<td>1.119</td>
</tr>
</tbody>
</table>

Table S2. Error statistics for SRS-MP2/cc-pVQZ in kJ mol$^{-1}$.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MAE$^{[a]}$</th>
<th>SD$^{[b]}$</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNB</td>
<td>1.6</td>
<td>1.1</td>
<td>-0.6</td>
<td>2.7</td>
</tr>
<tr>
<td>HBIL</td>
<td>2.2</td>
<td>2.3</td>
<td>-4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>R-IL</td>
<td>1.9</td>
<td>1.0</td>
<td>-1.5</td>
<td>4.6</td>
</tr>
<tr>
<td>X40</td>
<td>1.4</td>
<td>2.1</td>
<td>-1.2</td>
<td>8.0</td>
</tr>
<tr>
<td>MDM2-p53</td>
<td>1.2</td>
<td>1.4</td>
<td>-2.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

[a] Mean Absolute Error, [b] Standard Deviation

Table S3. Percentage error statistics for SRS-MP2/cc-pVQZ.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MAE</th>
<th>SD</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNB</td>
<td>3.0</td>
<td>1.9</td>
<td>6.1</td>
</tr>
<tr>
<td>HBIL</td>
<td>6.9</td>
<td>3.6</td>
<td>15.8</td>
</tr>
<tr>
<td>R-IL</td>
<td>9.7</td>
<td>5.9</td>
<td>28.8</td>
</tr>
<tr>
<td>X40</td>
<td>11.6</td>
<td>5.9</td>
<td>27.9</td>
</tr>
<tr>
<td>MDM2-p53</td>
<td>3.8</td>
<td>2.1</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Figure S1. Ratio distributions for the different datasets.

Figure S2. Error distributions for SRS-MP2 and original MP2 methods using the cc-pVQZ basis set across different datasets.
Table S4. CCSD(T)/CBS interaction correlation energies for the different datasets in kJ mol\(^{-1}\).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mean (^1)</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNB</td>
<td>-54.0</td>
<td>10.4</td>
<td>-72.1</td>
<td>-39.4</td>
</tr>
<tr>
<td>HBIL</td>
<td>-33.2</td>
<td>7.1</td>
<td>-46.3</td>
<td>-14.9</td>
</tr>
<tr>
<td>R-IL</td>
<td>-21.6</td>
<td>5.2</td>
<td>-34.9</td>
<td>-11.5</td>
</tr>
<tr>
<td>X40</td>
<td>-11.8</td>
<td>7.6</td>
<td>-35.9</td>
<td>-3.7</td>
</tr>
<tr>
<td>MDM2-p53</td>
<td>-34.7</td>
<td>14.0</td>
<td>-56.7</td>
<td>-15.0</td>
</tr>
</tbody>
</table>

Figure S3. Percentage error distributions for SRS-MP2 and original MP2 methods using the cc-pVTZ basis set across different datasets.
Table S5. Error statistics (all numbers are in kJ mol$^{-1}$) of MP2, SCS-MP2, SCS(MI), SCSN and SRS-MP2 for cc-pVTZ and cc-pVQZ basis sets, with cc-pVTZ used for SCSN. Error statistics for MP2/CBS are given for comparison.

<table>
<thead>
<tr>
<th>Basis set</th>
<th>Dataset</th>
<th>Method</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc-pVTZ</td>
<td>SNB</td>
<td>MP2 (non-CP)</td>
<td>10.6</td>
<td>10.6</td>
<td>4.38</td>
<td>4.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>0.64</td>
<td>2.67</td>
<td>3.41</td>
<td>-4.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>10.32</td>
<td>10.32</td>
<td>3.87</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS-MP2</td>
<td>-13.28</td>
<td>13.28</td>
<td>2.76</td>
<td>-17.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS(MI)</td>
<td>0.6</td>
<td>1.41</td>
<td>1.74</td>
<td>-1.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSN</td>
<td>-3.52</td>
<td>3.52</td>
<td>0.84</td>
<td>-4.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRS-MP2</td>
<td>-1.86</td>
<td>2.36</td>
<td>1.8</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
<td>HBIL</td>
<td>MP2 (non-CP)</td>
<td>8.64</td>
<td>8.64</td>
<td>3.5</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>-1.91</td>
<td>2.61</td>
<td>2.45</td>
<td>-7.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>0.84</td>
<td>1.44</td>
<td>1.59</td>
<td>-3.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS-MP2</td>
<td>-10</td>
<td>10</td>
<td>2.33</td>
<td>-14.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS(MI)</td>
<td>-1.73</td>
<td>2.44</td>
<td>2.44</td>
<td>-6.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSN</td>
<td>-4.07</td>
<td>4.21</td>
<td>2.48</td>
<td>-9.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRS-MP2</td>
<td>-0.94</td>
<td>2.22</td>
<td>2.45</td>
<td>-5.2</td>
</tr>
<tr>
<td></td>
<td>R-IL</td>
<td>MP2 (non-CP)</td>
<td>4.98</td>
<td>4.98</td>
<td>1.05</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>0.01</td>
<td>1</td>
<td>1.29</td>
<td>-4.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>5.35</td>
<td>5.35</td>
<td>1.14</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS-MP2</td>
<td>-5.62</td>
<td>5.62</td>
<td>1.88</td>
<td>-11.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS(MI)</td>
<td>0.23</td>
<td>1.16</td>
<td>1.49</td>
<td>-4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSN</td>
<td>-1.37</td>
<td>1.75</td>
<td>1.64</td>
<td>-5.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRS-MP2</td>
<td>0.85</td>
<td>1.2</td>
<td>1.18</td>
<td>-2.01</td>
</tr>
<tr>
<td></td>
<td>X40</td>
<td>MP2 (non-CP)</td>
<td>1.05</td>
<td>1.75</td>
<td>2.85</td>
<td>-1.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>0.01</td>
<td>1</td>
<td>1.29</td>
<td>-4.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>1.6</td>
<td>1.68</td>
<td>2.6</td>
<td>-0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRS-MP2</td>
<td>-0.26</td>
<td>1.65</td>
<td>2.04</td>
<td>-2.97</td>
</tr>
<tr>
<td></td>
<td>MDM2-p53</td>
<td>MP2 (non-CP)</td>
<td>3.76</td>
<td>3.76</td>
<td>3.2</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>-1.5</td>
<td>1.82</td>
<td>1.56</td>
<td>-4.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>3.48</td>
<td>3.48</td>
<td>2.93</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS-MP2</td>
<td>-9.65</td>
<td>9.65</td>
<td>3.7</td>
<td>-16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS(MI)</td>
<td>-2.11</td>
<td>2.11</td>
<td>0.94</td>
<td>-3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSN</td>
<td>-4.69</td>
<td>4.69</td>
<td>0.83</td>
<td>-5.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRS-MP2</td>
<td>-1.45</td>
<td>1.61</td>
<td>1.22</td>
<td>-2.96</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>SNB</td>
<td>MP2 (non-CP)</td>
<td>11.29</td>
<td>11.29</td>
<td>4.16</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2(CP)</td>
<td>6.39</td>
<td>6.39</td>
<td>3.62</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP2/CBS</td>
<td>10.32</td>
<td>10.32</td>
<td>3.87</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCS-MP2</td>
<td>-8.49</td>
<td>8.49</td>
<td>2.27</td>
<td>-11.9</td>
</tr>
<tr>
<td></td>
<td>SCS(MI)</td>
<td>SRS-MP2</td>
<td>SCS(MI)</td>
<td>SRS-MP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCS</td>
<td>0.51</td>
<td>1.36</td>
<td>2.83</td>
<td>-0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS</td>
<td>0.51</td>
<td>1.36</td>
<td>1.06</td>
<td>-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBIL MP2</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBIL MP2(CP)</td>
<td>0.17</td>
<td>1.51</td>
<td>1.51</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBIL MP2/CBS</td>
<td>0.84</td>
<td>1.44</td>
<td>1.44</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5-MP2</td>
<td>8.24</td>
<td>8.24</td>
<td>8.24</td>
<td>-11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5(MI)</td>
<td>-2.83</td>
<td>2.96</td>
<td>2.96</td>
<td>-5.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS-MP2</td>
<td>-1.06</td>
<td>2.23</td>
<td>2.23</td>
<td>-4.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IL MP2</td>
<td>5.65</td>
<td>5.65</td>
<td>5.65</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IL MP2(CP)</td>
<td>3.16</td>
<td>3.18</td>
<td>3.18</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IL MP2/CBS</td>
<td>5.35</td>
<td>5.35</td>
<td>5.35</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5-MP2</td>
<td>-2.94</td>
<td>2.94</td>
<td>2.94</td>
<td>-7.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5(MI)</td>
<td>0.75</td>
<td>1.22</td>
<td>1.22</td>
<td>-3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS-MP2</td>
<td>1.86</td>
<td>1.89</td>
<td>1.89</td>
<td>-1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X40 MP2</td>
<td>1.79</td>
<td>1.9</td>
<td>1.9</td>
<td>-0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X40 MP2(CP)</td>
<td>1.60</td>
<td>1.68</td>
<td>1.68</td>
<td>-0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X40 MP2/CBS</td>
<td>0.49</td>
<td>1.43</td>
<td>1.43</td>
<td>-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM2-p53 MP2</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM2-p53 MP2(CP)</td>
<td>1.38</td>
<td>1.59</td>
<td>1.59</td>
<td>-0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM2-p53 MP2/CBS</td>
<td>3.48</td>
<td>3.48</td>
<td>3.48</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5-MP2</td>
<td>-7.19</td>
<td>7.19</td>
<td>7.19</td>
<td>-11.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5(MI)</td>
<td>-2.58</td>
<td>2.58</td>
<td>2.58</td>
<td>-3.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS-MP2</td>
<td>-0.35</td>
<td>1.23</td>
<td>1.23</td>
<td>-1.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4. Comparison of SCS-MP2, SCS(MI) and SRS-MP2 performance for the four datasets studied for cc-pVQZ basis set, except SCSN, which is only available for aug-cc-pVTZ. SCS-MP2, SCS(MI) and SCSN used counterpoise corrected energies. The following scaling coefficients were used: 1) $c_{OS} = 1.2$ and $c_{SS} = 1/3$ for SCS-MP2; 2) $c_{OS} = 0.31$ and $c_{SS} = 1.46$ for SCS(MI).
Table S5. Error statistics (all numbers are in kJ mol\(^{-1}\)) of the SRS-MP2 for all basis sets and all Separations for the S66x8 dataset.

<table>
<thead>
<tr>
<th>Basis set</th>
<th>Separation</th>
<th>Mean(^1)</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>aug-cc-pVQZ</td>
<td>0.90</td>
<td>2.79</td>
<td>2.72</td>
<td>-9.01</td>
<td>1.95</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>0.90</td>
<td>1.95</td>
<td>2.24</td>
<td>-7.48</td>
<td>2.21</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>0.90</td>
<td>3.18</td>
<td>3.13</td>
<td>-9.69</td>
<td>2.48</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>0.95</td>
<td>2.17</td>
<td>2.09</td>
<td>-7.26</td>
<td>1.33</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>0.95</td>
<td>1.49</td>
<td>1.81</td>
<td>-6.10</td>
<td>1.42</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>0.95</td>
<td>2.47</td>
<td>2.50</td>
<td>-7.94</td>
<td>1.65</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>1.00</td>
<td>1.68</td>
<td>1.64</td>
<td>-5.85</td>
<td>0.92</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>1.00</td>
<td>1.15</td>
<td>1.46</td>
<td>-4.98</td>
<td>1.15</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>1.00</td>
<td>1.96</td>
<td>1.99</td>
<td>-6.52</td>
<td>1.30</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>1.05</td>
<td>1.30</td>
<td>1.30</td>
<td>-4.72</td>
<td>0.79</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>1.05</td>
<td>0.91</td>
<td>1.18</td>
<td>-4.07</td>
<td>1.03</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>1.05</td>
<td>1.50</td>
<td>1.60</td>
<td>-5.36</td>
<td>1.19</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>1.10</td>
<td>0.99</td>
<td>1.04</td>
<td>-3.81</td>
<td>0.69</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>1.10</td>
<td>0.73</td>
<td>0.96</td>
<td>-3.32</td>
<td>0.95</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>1.10</td>
<td>1.22</td>
<td>1.30</td>
<td>-4.39</td>
<td>1.09</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>1.25</td>
<td>0.53</td>
<td>0.67</td>
<td>-2.03</td>
<td>1.59</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>1.25</td>
<td>0.47</td>
<td>0.60</td>
<td>-1.82</td>
<td>0.94</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>1.25</td>
<td>0.67</td>
<td>0.76</td>
<td>-2.42</td>
<td>0.86</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>1.50</td>
<td>0.25</td>
<td>0.32</td>
<td>-0.76</td>
<td>0.99</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>1.50</td>
<td>0.23</td>
<td>0.28</td>
<td>-0.69</td>
<td>0.50</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>1.50</td>
<td>0.30</td>
<td>0.37</td>
<td>-0.92</td>
<td>0.65</td>
</tr>
<tr>
<td>aug-cc-pVQZ</td>
<td>2.00</td>
<td>0.10</td>
<td>0.10</td>
<td>-0.15</td>
<td>0.37</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>2.00</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.13</td>
<td>0.24</td>
</tr>
<tr>
<td>cc-pVTQZ</td>
<td>2.00</td>
<td>0.10</td>
<td>0.12</td>
<td>-0.19</td>
<td>0.37</td>
</tr>
</tbody>
</table>