Supporting Information

Charging assisted structural phase transitions in monolayer InSe

Liangzhi Kou†, Aijun Du†, Yandong Ma†, Ting Liao† and Changfeng Chen†
†School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia
†Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany
†Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States

Liangzhi.kou@qut.edu.au

Figure S1. Calculated phonon frequency of β-InSe monolayer using a 5×5 supercell. No imaginary frequency is observed, confirming the dynamical stability of the experimentally synthesized structure.
Figure S2. Calculated energy barrier (0.09 eV/atom) for the γ-β phase transition with ¼ sodium adsorption. The inset depicts the relaxed structure of γ-InSe with ¼ sodium adsorption.

Figure S3. Calculated (with SOC included) electronic band structure of γ-InSe monolayer with two electron injection into the unit cell.

Figure S4. Calculated electronic band structures of Na decorated γ-InSe monolayer without and with SOC.
Figure S5. Calculated electronic band structure of γ-InSe monolayer on the Ag (111) surface; the states from InSe are represented by the red dotted lines.

Figure S6. Calculated electronic band structure of the distorted γ-InSe monolayer.

Figure S7. Calculated electronic band structure of the bulk β-InSe.

Figure S8. Electronic band structures of the bilayer (left), trilayer (middle) and bulk (right) γ-InSe.