Hydrogen Assisted Synthesis of Branched Nickel Nanostructures: A Combined Theoretical and Experimental Study

Xin Liang,^{†,#} Ning Liu,^{†,‡,#} Huiyun Qiu,[†] Chong Zhang,[†] Donghai Mei,^{‡,*} Biaohua Chen^{†,*}

[†]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

[‡]Institute of Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA

99352, USA

[#]These authors contributed equally to this work.

* Corresponding authors:

chenbh@mail.buct.edu.cn (B. Chen); donghai.mei@pnnl.gov (D. Mei)

Supporting Information

Chemical Potential Calculation Method of Atomic H	S 1	
Table S1. Various k-point grids used in bulk and surface slab structure calculations	S2	
Table S2. Adsorption energy (ΔE_{ads}) and magnetic moments data of atomic H adsorpt on Ni(111), Ni(100), and Ni(110)	tion S3	
Table S3. Chemical potential of atomic H at $P = 6$ bar and $T = 100-1200$ K	S4	
Table S4. Chemical potential of atomic H at $P = 14$ bar and $T = 100-1200$ K	S4	
Table S5 . The crystalline size of Ni samples estimated by Debye-Scherrer equation us Ni (111) diffractions	sing S5	
Fig. S1 Optimized models of (a) oleylamine and (b) ethanol adsorption on Ni(11 $p(4x4)$	l 1)- S7	
Fig. S2 Optimized adsorption models of oleylamine and atomic H coadsorption	on	
Ni(111) (a), Ni(100) (b), and Ni(110) (c).	S 8	
Fig. S3 Surface free energy of (a) Ni(111), (b) Ni(100), and (c) Ni(111) as a function		
temperature for different H coverages (0, 0.25, 0.5, 0.75, 1.0, 1.5, 1.75, 2.0 ML) at P = 14 bar		
Fig. S4 TEM images of the intermediates of Ni-SB synthesized using different times:		
Fig. S5 TEM images of the intermediates of Ni-MP synthesized using different times:	(a)	
40 min; (b) 1.5 h; (c) 2.5 h	S11	
Fig. S6 Influencing of the magnetic stirring rate on the morphologies of the Ni-MP:	(a)	
r=0 r/min (b) $r = 200 r/min$ (c) $r=400 r/min$ S	512	
Fig. S7 EDS spectrum of Ni nanoparticlesS	13	

Fig. S8 a) TEM image of the pod of Ni-MP, b) HRTEM image of the pod of	Ni-MP, the
insert is corresponding FFT transferred pattern	S14
Fig. S9 SAED image of Ni-SB	S15

Chemical Potential Calculation Method of Atomic H

In present work, the chemical potential of atomic H were calculated according the following equation, which was referenced from Res. S1

$$\mu_{H}(T, p^{o}) = \mu_{H}^{H-rich}(0K, p^{0}) + 1/2\Delta G(T, p^{0}, H_{2})$$

= 1/2[H(T, p^{0}, H_{2}) - H(0K, p^{0}, H_{2})]
-1/2T[S(T, p^{0}, H_{2}) - S(0K, p^{0}, H_{2})] (1)

where H was enthalpy; S was entropy of H_2 molecule at standard pressure p^0 and temperature of T. The thermodynamic data of H_2 were got from JANAF Thermochemical Table.^{S2}

Based on the calculated $\mu_H(T, p^o)$ at standard pressure of 1 atm, it can also further calculated the H chemical potential at and pressure of p, according to the Eq. 2:

$$\mu_{H}(T,p) = \mu_{H}(T,p^{o}) + 1/2kT\ln(p/p^{0})$$
⁽²⁾

where k represent the Boltzmann constant. The calculated chemical potential of atomic H at T = 100-1200 K and P = 6 and 14 bar were listed in Table S1 and Table S2, respectively.

(S1) Reuter, K.; Scheffler, M. Composition, Structure, and Stability of RuO₂(110) as a function of oxygen pressure. Phys. Rev. B, 65, 035406.

(S2) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed. (U.S. National Bureau of Standards, Washington, DC, 1971).

Model	<i>k</i> -point grid
Ni Bulk	10 x 10 x 10
Ni(111)-p(2x2)	4x4x1
Ni(100)-p(2x2)	3x4x1
Ni(111)-p(2x2)	4x4x1

 Table S1. Various k-point grids used in bulk and surface slab structure calculations.

Ni facet	H site	H coverage /	Adsorption	Magnetic moment per
		ML	$energy(\Delta E_{ads}) \ / \ eV$	Nickle / eV
Ni(111)	Fcc	0.25	-0.65	0.56
Ni(111)	Fcc	0.5	-1.22	0.53
Ni(111)	Fcc	0.75	-1.80	0.48
Ni(111)	Fcc	1	-2.37	0.45
Ni(111)	Fcc+Hcp	1.5	-1.58	0.21
Ni(100)	4F ^a	0.25	-0.59	0.59
Ni(100)	4F ^a	0.5	-1.19	0.56
Ni(100)	4F ^a	0.75	-1.79	0.51
Ni(100)	4F ^a	1	-2.39	0.48
Ni(100)	Br ^b	1.5	-1.68	0.47
Ni(100)	Br ^b	1.75	-1.61	0.44
Ni(100)	Br ^b	2.0	-1.46	0.49
Ni(110)	3F ^c	0.25	-0.46	0.65
Ni(110)	3F ^c	0.5	-0.970	0.63
Ni(110)	3F ^c	0.75	-1.37	0.64
Ni(110)	3F ^c	1	-1.84	0.61
Ni(110)	${ m SB}^{ m d}$	1.5	-2.67	0.55
Ni(110)	${ m SB}^{ m d}$	1.75	-2.98	0.50
Ni(110)	SB^d	2.0	-3.43	0.48

Table S2. Adsorption energy (ΔE_{ads}) and magnetic moments data of atomic H adsorption on Ni(111), Ni(100), and Ni(110)

^a four fold site
^b bridge site
^c three fold site
^d short bridge site

T / K	$\mu_{H}(T,p)/eV$	T / K	$\mu_{_{H}}(T,p)$ / eV
100	-0.03	700	-0.41
200	-0.08	800	-0.48
300	-0.14	900	-0.56
400	-0.2	1000	-0.63
500	-0.26	1100	-0.71
600	-0.33	1200	-0.79

Table S3. Chemical potential of atomic H at P = 6 bar and T = 100-1200 K

Table S4. Chemical potential of atomic H at P = 14 bar and T = 100-1200 K

T / K	$\mu_{H}(T,p)/eV$	T / K	$\mu_{H}(T,p)/eV$
100	-0.03	700	-0.38
200	-0.07	800	-0.45
300	-0.13	900	-0.52
400	-0.18	1000	-0.60
500	-0.25	1100	-0.67
600	-0.31	1200	-0.75

Sample	Crystalline Size ^a (nm)	Relative Crystallinity ^b
Ni-NP	59	96
Ni-SB	49	90
Ni-MP	60	93

Table S5. The crystalline size of Ni samples estimated by Debye-Scherrer equation using

 Ni (111) diffractions

^a measured by Debye-Scherrer equation

^b with respect to (111) diffraction of standard Ni (PDF #01-0850)

The crystalline size of Ni-MP and Ni-SB were calculated based on Ni (111) diffractions according to Debye-Scherrer equation. The calculation results were listed in table S4.

(c)

(d)

Fig. S1 Optimized adsorption models of oleylamine and ethanol on Ni(111) (a, b), Ni(100) (c, d), and Ni(110) (e, f).

Fig. S2 Optimized adsorption models of oleylamine and atomic H coadsorption on Ni(111) (a), Ni(100) (b), and Ni(110) (c).

The total adsorption energies was respectively calculated to be -1.02 (Ni111), -0.61 (Ni100), and -0.95 eV (Ni110).

Fig. S3. Surface free energy of (a) Ni(111), (b) Ni(100), and (c) Ni(111) as a function of temperature for different H coverages (0, 0.25, 0.5, 0.75, 1.0, 1.5, 1.75, 2.0 ML) at P = 14 bar.

Fig. S4 TEM images of the intermediates of Ni-SB synthesized using different times: (a) 40 min; (b) 1.5 h; (c) 2.5 h

Fig. S5 TEM images of the intermediates of Ni-MP synthesized using different times: (a) 40 min; (b) 1.5 h; (c) 2.5 h

Fig. S6 Influencing of the magnetic stirring rate on the morphologies of the Ni-MP: (a) r=0 r/min (b) r = 200 r/min (c) r=400 r/min

Fig. S7. EDS spectrum of Ni nanoparticles.

Fig. S8 a) TEM image of the pod of Ni-MP, b) HRTEM image of the pod of Ni-MP, the insert is corresponding FFT transferred pattern.

Figure S5b shows the crystal fringes with a d spacing 0.204 nm, corresponding to the (111) crystal planes of fcc Ni. Careful observations reveal that the angle between the end plane and the (111) crystal plane is 109.5°. For cubic lattice system, the angle between two crystal planes, such as planes ($h_1k_1l_1$) and ($h_2k_2l_2$), follows the following formula:

$$cos \emptyset = \frac{h_1 h_2 + k_1 k_2 + l_1 l_2}{\sqrt{\left(h_1^2 + k_1^2 + l_1^2\right) + \left(h_2^2 + k_2^2 + l_2^2\right)}}$$

According to the formula, the angle between (111) and (-1-11) crystal planes is 109.5°. So it can be inferred that the end plane of the pod is (-1-11) crystal plane. The HRTEM supported that the growth directions of the pod is <111> directions.

Fig. S9 SAED image of Ni-SB.