SUPPORTING INFORMATION

Double-Ring Tubular (B₂O₂)ₙ Clusters (n=6-42) Rolled up from the Most Stable BO Double-Chain Ribbon in Boron Monoxides

Wen-Juan Tian, a Xin-Xin Tian, *, a Yue-Wen Mu, a Hai-Gang Lu, a and Si-Dian Li, *, a
Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

Electronic mail: lisidian@sxu.edu.cn.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017
Figure S1. Optimized planar and tubular structures of \((\text{B}_2\text{O}_2)_n\) \((n=6-12, 21, 42)\) with their relative energy in eV at the PBE0/6-311+G* level. The B atom is in blue and O in red.

Figure S2. Optimized alternative low-lying structures of \(\text{B}_{12}\text{O}_{12}\), with their relative energy in eV at PBE0/6-311+G*. Also shown are the relative energies at the single-point CCSD(T)//PBE0/6-311+G* (in *italic*), TPSSh/6-311+G* (in curly brackets), and B3LYP/6-311+G* levels (in square brackets), respectively. The B atom is in blue and O in red.

Figure S3. AdNDP bonding patterns of \(\text{B}_{14}\text{O}_{14}\) \((3, D_{7h})\) (a) and \(\text{B}_{16}\text{O}_{16}\) \((4, D_{8h})\) (b) with their occupation numbers (ONs) indicated.

Figure S4. Simulated (a) IR, (b) Raman, and (c) UV-Vis spectra of \(D_{6h} \text{B}_{12}\text{O}_{12}\) (2) at the PBE0/6-311+G* level.

Figure S5. Simulated photoelectron spectra of \(\text{B}_{12}\text{O}_{12}^-\) on the basis of TD-PBE0 calculations. The simulations were done by fitting the distribution of the calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.

Table S1. Optimized coordinates \((x, y, z)\) in Å of tubular \((\text{B}_2\text{O}_2)_n\) \((n=6-9)\) at the PBE0/6-311+G* level.
Figure S1. Optimized planar and tubular structures of \((\text{B}_2\text{O}_2)_n\) \((n=6-12, 21, 42)\) with their relative energy in eV at the PBE0/6-311+G* level. The B atom is in blue and O in red.

(a) \(\text{B}_6\text{O}_8\)

(b) \(\text{B}_{10}\text{O}_{10}\)

(c) \(\text{B}_{12}\text{O}_{12}\)

(d) \(\text{B}_{18}\text{O}_{18}\)

(e) \(\text{B}_{22}\text{O}_{22}\)
(f) $B_{24}O_{24}$

(g) $B_{42}O_{42}$

(h) $B_{84}O_{84}$
Figure S2 Optimized alternative low-lying structures of $\text{B}_{12}\text{O}_{12}$, with their relative energy in eV at PBE0/6-311+G*. Also shown are the relative energies at the single-point CCSD(T)//PBE0/6-311+G* (in italic), TPSSh/6-311+G* (in curly brackets), and B3LYP/6-311+G* levels (in square brackets), respectively. The B atom is in blue and O in red.
Figure S3. AdNDP bonding patterns of $\text{B}_{14}\text{O}_{14}$ (3, D_{7h}) (a) and $\text{B}_{16}\text{O}_{16}$ (4, D_{8h}) (b) with their occupation numbers (ONs) indicated.
Figure S4. Simulated (a) IR, (b) Raman, and (c) UV-Vis spectra of D_{6h} $\text{B}_{12}\text{O}_{12}$ (2) at the PBE0/6-311+G* level.
Figure S5. Simulated photoelectron spectra of $\text{B}_{12}\text{O}_{12}^-$ on the basis of TD-PBE0 calculations. The simulations were done by fitting the distribution of the calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.
Table S1. Optimized coordinates ((x, y, z) in Å) of tubular (B$_2$O$_2$)$_n$ (n=6-9) at PBE0/6-311+G*.

\[
D_{6h} \text{B}_{12}\text{O}_{12} \ (2)
\]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>2.20361000</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>-1.90838224</td>
<td>1.10180500</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>-1.90838224</td>
<td>-1.10180500</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>-2.20361000</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>1.90838224</td>
<td>-1.10180500</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>1.90838224</td>
<td>1.10180500</td>
<td>0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>1.90838224</td>
<td>-1.10180500</td>
<td>-0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>-0.00000000</td>
<td>-2.20361000</td>
<td>-0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>1.90838224</td>
<td>1.10180500</td>
<td>-0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>-0.00000000</td>
<td>2.20361000</td>
<td>-0.86953500</td>
</tr>
<tr>
<td>B</td>
<td>-1.90838224</td>
<td>1.10180500</td>
<td>-0.86953500</td>
</tr>
<tr>
<td>O</td>
<td>-1.18433138</td>
<td>2.05132212</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>1.18433138</td>
<td>2.05132212</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>-2.36866276</td>
<td>0.00000000</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>1.18433138</td>
<td>-2.05132212</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>-1.18433138</td>
<td>-2.05132212</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>2.36866276</td>
<td>0.00000000</td>
<td>1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>1.18433138</td>
<td>-2.05132212</td>
<td>-1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>1.18433138</td>
<td>2.05132212</td>
<td>-1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>-2.36866276</td>
<td>0.00000000</td>
<td>-1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>-1.18433138</td>
<td>2.05132212</td>
<td>-1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>-1.18433138</td>
<td>-2.05132212</td>
<td>-1.55952800</td>
</tr>
<tr>
<td>O</td>
<td>2.36866276</td>
<td>0.00000000</td>
<td>-1.55952800</td>
</tr>
</tbody>
</table>

\[
D_{7h} \text{B}_{14}\text{O}_{14} \ (3)
\]

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1.18158653</td>
<td>2.45358971</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-1.18158653</td>
<td>2.45358971</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-2.65500084</td>
<td>0.60598662</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-2.12914536</td>
<td>-1.69793676</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-0.00000000</td>
<td>-2.72327913</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>2.12914536</td>
<td>-1.69793676</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>2.65500084</td>
<td>0.60598662</td>
<td>-1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-1.18158653</td>
<td>2.45358971</td>
<td>1.56446001</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>O</td>
<td>1.18158653</td>
<td>2.45358971</td>
<td>1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>2.65500084</td>
<td>0.60598662</td>
<td>1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>2.12914536</td>
<td>-1.69793676</td>
<td>1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>0.00000000</td>
<td>-2.72327913</td>
<td>1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-2.65500084</td>
<td>0.60598662</td>
<td>1.56446001</td>
</tr>
<tr>
<td>O</td>
<td>-2.12914536</td>
<td>-1.69793676</td>
<td>1.56446001</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>2.57617591</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>2.01413543</td>
<td>1.60621941</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>2.01413543</td>
<td>1.60621941</td>
<td>0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>2.57617591</td>
<td>0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>-2.01413543</td>
<td>1.60621941</td>
<td>0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>-2.01413543</td>
<td>1.60621941</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>-2.51158580</td>
<td>-0.57325307</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>-1.11776084</td>
<td>-2.32105430</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>1.11776084</td>
<td>-2.32105430</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>2.51158580</td>
<td>-0.57325307</td>
<td>-0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>-1.11776084</td>
<td>-2.32105430</td>
<td>0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>1.11776084</td>
<td>-2.32105430</td>
<td>0.86848700</td>
</tr>
<tr>
<td>B</td>
<td>2.51158580</td>
<td>-0.57325307</td>
<td>0.86848700</td>
</tr>
</tbody>
</table>

\[D_{8h} \text{B}_{16}\text{O}_{16}\ (4)\]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>2.95153900</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.08705300</td>
<td>2.08705300</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.95153900</td>
<td>0.00000000</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.08705300</td>
<td>-2.08705300</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>-2.95153900</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>2.08705300</td>
<td>-2.08705300</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>2.08705300</td>
<td>2.08705300</td>
<td>0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>2.08705300</td>
<td>2.08705300</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>2.95153900</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.08705300</td>
<td>2.08705300</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.95153900</td>
<td>0.00000000</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>-2.08705300</td>
<td>-2.08705300</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>0.00000000</td>
<td>-2.95153900</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>2.08705300</td>
<td>-2.08705300</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>B</td>
<td>2.95153900</td>
<td>0.00000000</td>
<td>-0.86784500</td>
</tr>
<tr>
<td>O</td>
<td>2.84809500</td>
<td>1.17972000</td>
<td>-1.56753000</td>
</tr>
</tbody>
</table>
\[D_{9h} B_{18}O_{18} (5) \]

B 0.00000000 -3.32796990 -0.86740500
B -2.13917782 -2.54937285 -0.86740500
B -3.27741056 -0.57789591 -0.86740500
B -2.13917782 -2.54937285 0.86740500
B 0.00000000 -3.32796990 0.86740500
B 2.13917782 -2.54937285 0.86740500
B 3.27741056 -0.57789591 0.86740500
B -3.27741056 -0.57789591 0.86740500
B -2.88210647 1.66398495 -0.86740500
B -1.13823274 3.12726875 -0.86740500
B -2.88210647 1.66398495 0.86740500
B -1.13823274 3.12726875 0.86740500
B 1.13823274 3.12726875 -0.86740500
B 2.88210647 1.66398495 -0.86740500
B 1.13823274 3.12726875 0.86740500
B 2.88210647 1.66398495 0.86740500
B 3.27741056 -0.57789591 -0.86740500
B 2.13917782 -2.54937285 -0.86740500
B 3.39193894 0.59809035 -1.56960600
B 2.98282105 -1.72213253 -1.56960600
B 1.17800803 -3.23655047 -1.56960600
B -1.17800803 -3.23655047 -1.56960600

O 2.84809500 -1.17972000 -1.56753000
O 1.17972000 -2.84809500 -1.56753000
O -1.17972000 -2.84809500 -1.56753000
O -2.84809500 -1.17972000 -1.56753000
O -2.84809500 1.17972000 -1.56753000
O -1.17972000 2.84809500 -1.56753000
O 1.17972000 2.84809500 -1.56753000
O 2.84809500 -1.17972000 1.56753000
O 1.17972000 -2.84809500 1.56753000
O -1.17972000 -2.84809500 1.56753000
O -2.84809500 -1.17972000 1.56753000
O -2.84809500 1.17972000 1.56753000
O -1.17972000 2.84809500 1.56753000
O 1.17972000 2.84809500 1.56753000
O 2.84809500 1.17972000 1.56753000
O -2.98282105 -1.72213253 -1.56960600
O -3.39193894 0.59809035 -1.56960600
O -2.21393091 2.63846012 -1.56960600
O -0.00000000 3.44426507 -1.56960600
O 2.21393091 2.63846012 -1.56960600
O 3.39193894 0.59809035 1.56960600
O 2.98282105 -1.72213253 1.56960600
O 1.17800803 -3.23655047 1.56960600
O -1.17800803 -3.23655047 1.56960600
O 2.98282105 -1.72213253 1.56960600
O 3.39193894 0.59809035 1.56960600
O -2.21393091 2.63846012 1.56960600
O 0.00000000 3.44426507 1.56960600
O 2.21393091 2.63846012 1.56960600