Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

SUPPORTING INFORMATION

Double-Ring Tubular (B₂O₂)_n Clusters (n=6-42) Rolled up from the Most Stable BO Double-Chain Ribbon in Boron Monoxides

Wen-Juan Tian,^a Xin-Xin Tian,^{*,a} Yue-Wen Mu,^a Hai-Gang Lu,^a and Si-Dian Li^{*,a}

Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

Electronic mail: lisidian@sxu.edu.cn.

- Figure S1. Optimized planar and tubular structures of (B₂O₂)_n (n=6-12, 21, 42) with their relative energy in eV at the PBE0/6-311+G* level. The B atom is in blue and O in red.
- **Figure S2.** Optimized alternative low-lying structures of B₁₂O₁₂, with their relative energy in eV at PBE0/6-311+G*. Also shown are the relative energies at the single-point CCSD(T)//PBE0/6-311+G* (in *italic*), TPSSh/6-311+G* (in curly brackets), and B3LYP/6-311+G* levels (in square brackets), respectively. The B atom is in blue and O in red.
- **Figure S3.** AdNDP bonding patterns of $B_{14}O_{14}$ (**3**, D_{7h}) (a) and $B_{16}O_{16}$ (**4**, D_{8h}) (b) with their occupation numbers (ONs) indicated.
- Figure S4. Simulated (a) IR, (b) Raman, and (c) UV-Vis spectra of D_{6h} B₁₂O₁₂ (2) at the PBE0/6-311+G* level.
- Figure S5. Simulated photoelectron spectra of $B_{12}O_{12}^{-}$ on the basis of TD-PBE0 calculations. The simulations were done by fitting the distribution of the calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.
- **Table S1.** Optimized coordinates ((x, y, z) in Å) of tubular $(B_2O_2)_n$ (n=6-9) at the PBE0/6-311+G* level.

Figure S1. Optimized planar and tubular structures of $(B_2O_2)_n$ (n=6-12, 21, 42) with their relative energy in eV at the PBE0/6-311+G* level. The B atom is in blue and O in red.

(g) B₄₂O₄₂

(h) B₈₄O₈₄

Figure S2 Optimized alternative low-lying structures of B₁₂O₁₂, with their relative energy in eV at PBE0/6-311+G*. Also shown are the relative energies at the single-point CCSD(T)//PBE0/6-311+G* (in *italic*), TPSSh/6-311+G* (in curly brackets), and B3LYP/6-311+G* levels (in square brackets), respectively. The B atom is in blue and O in red.

S7

Figure S3. AdNDP bonding patterns of $B_{14}O_{14}$ (3, D_{7h}) (a) and $B_{16}O_{16}$ (4, D_{8h}) (b) with their occupation numbers (ONs) indicated.

(a) B₁₄O₁₄ (3, D_{7h})

14×1c-2e O ON=1.93 |e|

28×2c-2e B-O σ-bonds ON=1.99 |e|

7×2c-2e B-B σ-bonds ON=1.94 |e|

14×3c-2e B-O-B π-bonds ON=1.99 |e|

(b) B₁₆O₁₆ (4, D_{8h})

16×1c-2e O ON=1.93 |e|

 $32 \times 2c-2e B-O \sigma$ -bonds $8 \times 2c-2e B-B \sigma$ -bonds ON=1.99 |e|

ON=1.95 |e|

Figure S4. Simulated (a) IR, (b) Raman, and (c) UV-Vis spectra of D_{6h} B₁₂O₁₂ (2) at the PBE0/6-311+G* level.

Figure S5. Simulated photoelectron spectra of $B_{12}O_{12}^{-}$ on the basis of TD-PBE0 calculations. The simulations were done by fitting the distribution of the calculated VDEs with unit-area Gaussian functions of 0.04 eV half-width.

 $\textbf{Table S1. Optimized coordinates ((x, y, z) in Å) of tubular (B_2O_2)_n (n=6-9) at PBE0/6-311+G*.}$

$D_{6h} \operatorname{B}_{12} \operatorname{O}_{12} (2)$			
В	0.00000000	2.20361000	0.86953500
В	-1.90838224	1.10180500	0.86953500
В	-1.90838224	-1.10180500	0.86953500
В	0.00000000	-2.20361000	0.86953500
В	1.90838224	-1.10180500	0.86953500
В	1.90838224	1.10180500	0.86953500
В	1.90838224	-1.10180500	-0.86953500
В	-0.00000000	-2.20361000	-0.86953500
В	1.90838224	1.10180500	-0.86953500
В	-0.00000000	2.20361000	-0.86953500
В	-1.90838224	1.10180500	-0.86953500
В	-1.90838224	-1.10180500	-0.86953500
0	-1.18433138	2.05132212	1.55952800
0	1.18433138	2.05132212	1.55952800
0	-2.36866276	0.00000000	1.55952800
0	1.18433138	-2.05132212	1.55952800
0	-1.18433138	-2.05132212	1.55952800
0	2.36866276	0.00000000	1.55952800
0	1.18433138	-2.05132212	-1.55952800
0	1.18433138	2.05132212	-1.55952800
0	-2.36866276	0.00000000	-1.55952800
0	-1.18433138	2.05132212	-1.55952800
0	-1.18433138	-2.05132212	-1.55952800
0	2.36866276	0.00000000	-1.55952800

 $D_{7h} \operatorname{B}_{14} \operatorname{O}_{14} \left(\mathbf{3} \right)$

0	1.18158653	2.45358971	-1.56446001
0	-1.18158653	2.45358971	-1.56446001
0	-2.65500084	0.60598662	-1.56446001
0	-2.12914536	-1.69793676	-1.56446001
0	-0.00000000	-2.72327913	-1.56446001
0	2.12914536	-1.69793676	-1.56446001
0	2.65500084	0.60598662	-1.56446001
0	-1.18158653	2.45358971	1.56446001

0	1.18158653	2.45358971	1.56446001	
0	2.65500084	0.60598662	1.56446001	
0	2.12914536	-1.69793676	1.56446001	
0	0.00000000	-2.72327913	1.56446001	
0	-2.65500084	0.60598662	1.56446001	
0	-2.12914536	-1.69793676	1.56446001	
В	0.00000000	2.57617591	-0.86848700	
В	2.01413543	1.60621941	-0.86848700	
В	2.01413543	1.60621941	0.86848700	
В	0.00000000	2.57617591	0.86848700	
В	-2.01413543	1.60621941	0.86848700	
В	-2.01413543	1.60621941	-0.86848700	
В	-2.51158580	-0.57325307	-0.86848700	
В	-2.51158580	-0.57325307	0.86848700	
В	-1.11776084	-2.32105430	-0.86848700	
В	1.11776084	-2.32105430	-0.86848700	
В	2.51158580	-0.57325307	-0.86848700	
В	-1.11776084	-2.32105430	0.86848700	
В	1.11776084	-2.32105430	0.86848700	
В	2.51158580	-0.57325307	0.86848700	

 $D_{8h} B_{16} O_{16} (4)$

В	0.00000000	2.95153900	0.86784500
В	-2.08705300	2.08705300	0.86784500
В	-2.95153900	0.00000000	0.86784500
В	-2.08705300	-2.08705300	0.86784500
В	0.00000000	-2.95153900	0.86784500
В	2.08705300	-2.08705300	0.86784500
В	2.95153900	0.00000000	0.86784500
В	2.08705300	2.08705300	0.86784500
В	2.08705300	2.08705300	-0.86784500
В	0.00000000	2.95153900	-0.86784500
В	-2.08705300	2.08705300	-0.86784500
В	-2.95153900	0.00000000	-0.86784500
В	-2.08705300	-2.08705300	-0.86784500
В	0.00000000	-2.95153900	-0.86784500
В	2.08705300	-2.08705300	-0.86784500
В	2.95153900	0.00000000	-0.86784500
0	2.84809500	1.17972000	-1.56753000

0	2.84809500	-1.17972000	-1.56753000
0	1.17972000	-2.84809500	-1.56753000
0	-1.17972000	-2.84809500	-1.56753000
0	-2.84809500	-1.17972000	-1.56753000
0	-2.84809500	1.17972000	-1.56753000
0	-1.17972000	2.84809500	-1.56753000
0	1.17972000	2.84809500	-1.56753000
0	2.84809500	-1.17972000	1.56753000
0	1.17972000	-2.84809500	1.56753000
0	-1.17972000	-2.84809500	1.56753000
0	-2.84809500	-1.17972000	1.56753000
0	-2.84809500	1.17972000	1.56753000
0	-1.17972000	2.84809500	1.56753000
0	1.17972000	2.84809500	1.56753000
0	2.84809500	1.17972000	1.56753000

$D_{9h} \operatorname{B}_{18} \operatorname{O}_{18} (5)$			
В	0.00000000	-3.32796990	-0.86740500
В	-2.13917782	-2.54937285	-0.86740500
В	-3.27741056	-0.57789591	-0.86740500
В	-2.13917782	-2.54937285	0.86740500
В	0.00000000	-3.32796990	0.86740500
В	2.13917782	-2.54937285	0.86740500
В	3.27741056	-0.57789591	0.86740500
В	-3.27741056	-0.57789591	0.86740500
В	-2.88210647	1.66398495	-0.86740500
В	-1.13823274	3.12726875	-0.86740500
В	-2.88210647	1.66398495	0.86740500
В	-1.13823274	3.12726875	0.86740500
В	1.13823274	3.12726875	-0.86740500
В	2.88210647	1.66398495	-0.86740500
В	1.13823274	3.12726875	0.86740500
В	2.88210647	1.66398495	0.86740500
В	3.27741056	-0.57789591	-0.86740500
В	2.13917782	-2.54937285	-0.86740500
Ο	3.39193894	0.59809035	-1.56960600
0	2.98282105	-1.72213253	-1.56960600
Ο	1.17800803	-3.23655047	-1.56960600
0	-1.17800803	-3.23655047	-1.56960600

0	-2.98282105	-1.72213253	-1.56960600
0	-3.39193894	0.59809035	-1.56960600
0	-2.21393091	2.63846012	-1.56960600
0	-0.00000000	3.44426507	-1.56960600
0	2.21393091	2.63846012	-1.56960600
0	3.39193894	0.59809035	1.56960600
0	2.98282105	-1.72213253	1.56960600
0	1.17800803	-3.23655047	1.56960600
0	-1.17800803	-3.23655047	1.56960600
0	-2.98282105	-1.72213253	1.56960600
0	-3.39193894	0.59809035	1.56960600
0	-2.21393091	2.63846012	1.56960600
0	0.00000000	3.44426507	1.56960600
0	2.21393091	2.63846012	1.56960600