Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017 **Combined NMR and DFT study of conformational dynamics in**

lanthanide DOTA-like complexes

Jan Blahut, Petr Hermann, Zdeněk Tošner, and Carlos Platas-Iglesias,

Electronic supplementary information

Content:

- Figure S1: ³¹P spectra of a) $[Eu(Hdo3ap)(D_2O)]^-$ and b) $[Eu(Hdo3ap)(D_2O)]^{2-}$
- Table S1: ¹H chemical shifts at 5 °C of axial and equatorial hydrogen atoms nuclei used in 1D **EXSY studies**.
- Figure S2: ¹H 2D-COSY and 2D-EXSY spectra of $[Eu(Hdo3ap)(D_2O)]^-$ and $[Eu(do3ap)(D_2O)]^{2-}$ •
- Figure S3–S5: Fitting of ¹H 1D-EXSY experiments at different temperatures for [Eu(dota)(D₂O)]⁻ $[Eu(Hdo3ap)(D_2O)]^-$ and $[Eu(do3ap)(D_2O)]^{2-}$
- Figure S6 and S7: Fitting of ³¹P 1D-EXSY experiments at 5 °C for [Eu(Hdo3ap)(D₂O)]⁻ and $[Eu(do3ap)(D_2O)]^{2-}$
- Figure S8: Temperature dependence of exchange rates of $[Eu(dota)(D_2O)]^-$, $[Eu(Hdo3ap)(D_2O)]^ [Eu(do3ap)(D_2O)]^{2-}$ fitted using the Eyring equation.
- Table S2: Exchange and relaxation rates of $[Eu(dota)(D_2O)]^-$ •
- Table S3: Exchange and relaxation rates of [Eu(Hdo3ap)(D₂O)]⁻ •
- Table S4: Exchange and relaxation rates of $[Eu(do3ap)(D_2O)]^{2-}$ •
- Table S5: Exchange and relaxation rates of $[Eu(Hdo3ap)(D_2O)]^{2-}$ and $[Eu(do3ap)(D_2O)]^{2-}$ • determined by ³¹P 1D-EXSY at 5 °C
- Table S6 and Figure S9: Calculated energy profile for the cyclen inversion of [Eu(dota)(H₂O)]⁻.
- Table S7 and Figure S10: Calculated energy profile for the cyclen inversion of • $[Eu(Hdo3ap)(H_2O)]^-$.
- Table S8 and Figure S11: Calculated energy profile for the cyclen inversion of [Eu(do3ap)(H₂O)]²⁻ •
- Table S9: Contributions to activation entropy for the ring-inversion process responsible for the • SAP \rightarrow TSAP interconversion process.
- Figure S12. Calculated molecular structure of $[Eu(dota)(H_2O)]^- \cdot 2H_2O$ (SAP geometry). •
- Figure S13. Calculated molecular structure of $[Eu(do3ap)(H_2O)]^{2-} \cdot 2H_2O$ (SAP geometry).
- Figure S14. Calculated molecular structure of [Eu(Hdo3ap)(H₂O)]⁻·2H₂O (SAP geometry). Carbonbound hydrogen atoms omitted for the sake of clarity

For all calculated Cartesian coordinates and related energies of intermediates see folder in coordinatesArchive.rar archive.

5 °C and 162 MHz.

δ/ppm	dota	Hdo3ap	do3ap
SAP axial 1	36.32	38.02	40.68
SAP axial 2	-	37.00	39.68
SAP axial 3	_	34.98	37.20
SAP axial 4	_	29.50	28.30
TSAP axial 1	13.78	20.74	25.16
TSAP axial 2	-	17.17	20.34
TSAP axial 3	_	11.76	12.93
TSAP axial 4	_	9.34	9.70
SAP equatorial 1	-7.04	-2.78	-1.04
SAP equatorial 2	_	-4.02	-3.15
SAP equatorial 3	-	-10.07	-10.01
SAP equatorial 4	-	-9.26	-8.43
TSAP equatorial 1	-10.06	-3.84	-4.48
TSAP equatorial 2	-	-7.83	-4.03
TSAP equatorial 3	_	-11.98	-11.32
TSAP equatorial 4	-	-14.3	-16.81

Table S1: ¹H chemical shifts at 5 °C of axial and equatorial hydrogen nuclei used in 1D-EXSY studies. Supplement to Figure 2 in the main text.

Figure S2: ¹H-¹H 2D-COSY (black) and ¹H 2D-EXSY spectra (red) of a) $[Eu(Hdo3ap)(D_2O)]^-$ (pD = 3.6) and b) $[Eu(do3ap)(D_2O)]^{2-}$ (pD = 8.5); 5 °C, 600 MHz, mixing time 5 ms for (a) and 10 ms for (b).

simultaneous fit of all four data sets using Equation [2].

Figure S4. Relative areas of proton NMR signals of $[Eu(Hdo3ap)(D_2O)]^-$ as a function of the mixing time obtained from 1D-EXSY experiments at a) 5 °C b) 15 °C c) 25 °C and d) 35 °C at pD = 3.6. The insets show the evolution of the magnetisation of the signal to which the refocusing selective 180° pulse was applied. Symbols: TSAP_{ax} (+), SAP_{eq} (×), TSAP_{eq} (*), SAP_{ax} (\circ). The solid lines represent the simultaneous fit of all four data sets using Equation [2].

simultaneous fit of all four data sets using Equation [2].

Figure S6. Relative areas of signals of [Eu(Hdo3ap)(D₂O)]² as a function of the mixing time obtained from ³¹P 1D-EXSY experiments at 5 °C; pD(25 °C) = 3.6. The insets show the evolution of the magnetisation of the signal to which the refocusing selective 180° pulse was applied. Symbols: TSAP (+), SAP (\circ). The solid lines represent the simultaneous fit of both data sets using Equation [2] modified for two-site exchange.

Figure S7. Relative areas of signals of $[Eu(do3ap)(D_2O)]^{2-}$ as a function of the mixing time obtained from ³¹P 1D-EXSY experiments at 5 °C; pD(25 °C) = 8.5. The insets show the evolution of the magnetisation of the signal to which the refocusing selective 180° pulse was applied. Symbols: TSAP (+), SAP (\circ). The solid lines represent the simultaneous fit of both data sets using Equation [2] modified for two-site exchange.

Doromotor		Tempera	ature / °C	
Parameter	5	15	25	35
k _{PendSAP}	5.58(6)	15.6(3)	35.8(6)	104(3)
K CycleSAP	10.60(7)	30.8(5)	62(1)	147(3)
k_{PendTSAP}	25.81(7)	63.0(4)	126.6(9)	345(24)
k _{CycleTSAP}	52.30(8)	120.4(5)	231(1)	624(31)
K _{EXSY}	0.207(5)	0.25(1)	0.27(1)	0.26(4)
R _{1Ax. SAP}	69.1(1)	55.1 (6)	43(1)	30(3)
$R_{1Eq. SAP}$	22.53(7)	16.2(5)	11(1)	0(5)
$R_{1Ax. TSAP}$	47.6(2)	45.9(7)	41(1)	130(25)
$R_{1Eq. TSAP}$	18.3(1)	34(4)	54(8)	17(15)

Table S2: Exchange and relaxation rates of [Eu(dota)(D₂O)]^{-[a]}

[a] k / s^{-1} are exchange rates, R_1 / s^{-1} are longitudinal relaxation rates and K_{EXSY} is equilibrium constants calculated as $K_{EXSY} = (k_{PendSAP} + k_{CycleSAP})/(k_{PendTSAP} + k_{CycleTSAP})$.

Table S3: Exchange and relaxation rates of [Eu(Hdo3ap)(D₂O)]^{- [a]}

Daramatar	Temperature / °C							
Parameter	5	15	25	35				
k_{PendSAP}	23.2(5)	68(1)	150(1)	357(7)				
$k_{CycleSAP}$	19.6(6)	50(1)	98(1)	216(9)				
k_{PendTSAP}	25.0(5)	67.6(8)	150(1)	374(8)				
k _{CycleTSAP}	23.0(6)	52.3(9)	100(1)	202(9)				
K _{EXSY}	0.89(9)	0.98(7)	0.99(4)	1.0(1)				
R _{1Ax. SAP}	69.4(9)	63(1)	57(1)	68(9)				
$R_{1Eq. SAP}$	20(3)	8(3)	9(3)	43(29)				
$R_{1Ax. TSAP}$	54.1 (9)	55(1)	52(1)	37(9)				
$R_{1Eq. TSAP}$	22(3)	32(4)	22(3)	0(28)				

[a] k / s^{-1} are exchange rates, R_1 / s^{-1} are longitudinal relaxation rates and K_{EXSY} is equilibrium constants calculated as $K_{EXSY} = (k_{PendSAP} + k_{CycleSAP})/(k_{PendTSAP} + k_{CycleTSAP})$.

Table S4: Exchange and relaxation rates of $[Eu(do3ap)(D_2O)]^{2- [a]}$

Parameter	Temperature / °C							
	5	15	25	35				
k _{PendSAP}	99.7(3)	280(1)	619(8)	1305(30)				
$k_{CycleSAP}$	21.0(3)	56(1)	118(5)	152(22)				
k PendTSAP	71.7(3)	180(1)	374(5)	762(23)				
K _{CycleTSAP}	15.5(2)	38.2(9)	80(4)	215(18)				
K _{EXSY}	1.39(5)	1.54(8)	1.6(2)	1.5(4)				
R _{1Ax. SAP}	73.2(4)	59(1)	42(7)	122(24)				
$R_{1Eq. SAP}$	16(2)	0(6)	0(29)	0(110)				
R _{1Ax. TSAP}	59.0(3)	63(1)	58(4)	0(19)				
$R_{1Eq. TSAP}$	23(2)	35(4)	40(18)	32(72)				

[a] k / s^{-1} are exchange rates, R_1 / s^{-1} are longitudinal relaxation rates and K_{EXSY} is equilibrium constants calculated as $K_{EXSY} = (k_{PendSAP} + k_{CycleSAP})/(k_{PendTSAP} + k_{CycleTSAP})$.

Table S5: Exchange and relaxation rates of $[Eu(Hdo3ap)(D_2O)]^{2-}$ and $[Eu(do3ap)(D_2O)]^{2-}$ as determined by ³¹P 1D-EXSY at 5 °C.^[a]

Parameter	[Eu(Hdo3ap)(D ₂ O)] ²⁻	[Eu(do3ap)(D ₂ O)] ²⁻
k _{SAP}	42(3)	120(3)
k_{tsap}	45(3)	82(3)
K _{EXSY}	0.93(6)	1.46(4)
R _{SAP}	12(3)	7(2)
R _{TSAP}	9(3)	16(2)

[a] k_{SAP} / s^{-1} , k_{TSAP} / s^{-1} are exchange rates of exchange from SAP \rightarrow TSAP and backward respectively, R_1 / s^{-1} are longitudinal relaxation rates and K_{EXSY} equilibrium constants calculated as $K_{\text{EXSY}} = k_{\text{SAP}} / k_{\text{TSAP}}$. It should be highlighted that arm rotation and cycle inversion cannot be separated by ³¹P 1D-EXSY as a sum of both processes is observed.

Table S6: Calculated energy profile of cyclen inversion of $[Eu(dota)(H_2O)]^-$. The most favourable pathway is in bold and the rate-determining step is <u>underlined</u>.

Sequence of chelate							$\Delta G^{\dagger}_{calc}$	25 °C) /	kJ mol⁻¹			
ring inversions			SAP	TS 1	int 1	TS 2	int 2	TS 3	int 3	TS 4	TSAP	
2	<u>3</u>	4	1	0.00	60.54	19.05	<u>61.99</u>	28.91	57.87	24.77	60.08	-2.84
3	2	4	1	0.00	60.54	21.37	66.90	28.91	57.87	24.77	60.08	-2.84
2	4	3	1	0.00	60.54	19.05	64.48	27.28	63.28	24.77	60.08	-2.84
4	2	3	1	0.00	60.54	21.88	68.08	27.28	63.28	24.77	60.08	-2.84
4	3	2	1	0.00	60.54	21.87	67.01	30.37	72.08	24.77	60.08	-2.84
3	4	2	1	0.00	60.54	21.37	67.42	30.37	72.08	24.77	60.08	-2.84

Figure S9: Energy profile calculated for the cyclen inversion of $[Eu(dota)(H_2O)]^-$ at 25 °C. The lowest energy pathway is highlighted in red while the experimental activation free energy is represented by a black dashed line.

Sequ	ience	of che	elate	$\Delta G^{t}_{calc}(25 \text{ °C}) \text{ / kJ mol}^{-1}$								
ri	ing inv	ersio	า	SAP	TS 1	int 1	TS 2	int 2	TS 3	int 3	TS 4	TSAP
1	2	3	4	0	63.6	19.8	64.7	26.9	55.5	19.2	56.8	-2.6
2	1	3	4	0	51.5	19.4	66.2	26.9	55.5	19.2	56.8	-2.6
1	3	2	4	0	63.6	19.8	72.6	32.4	55.0	19.2	56.8	-2.6
3	1	2	4	0	63.7	21.7	69.8	32.4	55.0	19.2	56.8	-2.6
3	2	1	4	0	63.7	21.7	57.5	24.6	65.9	19.2	56.8	-2.6
2	3	1	4	0	51.5	19.4	60.6	24.6	65.9	19.2	56.8	-2.6
1	2	4	3	0	63.6	19.8	64.7	26.9	69.5	23.0	62.3	-2.6
2	1	4	3	0	51.5	19.4	66.2	26.9	69.5	23.0	62.3	-2.6
1	4	2	3	0	63.6	19.8	62.9	25.7	63.0	23.0	62.3	-2.6
4	1	2	3	0	59.6	21.8	71.6	25.7	63.0	23.0	62.3	-2.6
4	2	1	3	0	59.6	21.8	62.8	29.6	66.4	23.0	62.3	-2.6
2	4	1	3	0	51.5	19.4	65.0	29.6	66.4	23.0	62.3	-2.6
1	4	3	2	0	63.6	19.8	62.9	25.7	71.8	27.9	51.7	-2.6
4	1	3	2	0	59.6	21.8	71.6	25.7	71.8	27.9	51.7	-2.6
1	3	4	2	0	63.6	19.8	72.6	32.4	65.7	27.9	51.7	-2.6
3	1	4	2	0	63.7	21.7	69.8	32.4	65.7	27.9	51.7	-2.6
3	4	1	2	0	63.7	21.7	65.5	34.6	67.4	27.9	51.7	-2.6
4	3	1	2	0	59.6	21.8	68.0	34.6	67.4	27.9	51.7	-2.6
4	2	3	1	0	59.6	21.8	62.8	29.6	62.9	20.0	59.4	-2.6
2	4	3	1	0	51.5	19.4	65.0	29.6	62.9	20.0	59.4	-2.6
4	3	2	1	0	59.6	21.8	68.0	34.6	64.0	20.0	59.4	-2.6
3	4	2	1	0	63.7	21.7	65.5	34.6	64.0	20.0	59.4	-2.6
3	2	4	1	0	63.7	21.7	57.5	24.6	56.4	20.0	59.4	-2.6
2	3	4	1	0	51.5	19.4	60.6	24.6	56.4	20.0	59.4	-2.6

Table S7: Calculated energy profile of cyclen inversion of $[Eu(Hdo3ap)(H_2O)]^-$. The most favourable pathway is in bold and the rate-determining step is <u>underlined</u>.

Figure S10: Energy profile calculated for the cyclen inversion of $[Eu(Hdo3ap)(H_2O)]^-$ at 25 °C. The lowest energy pathway is highlighted in red, while the experimental activation free energy is represented by a black dashed line.

Seque	ence o	f chel	ate	ΔG^{t}_{calc} (25 °C) / kJ mol ⁻¹								
rin	ig inve	ersion		SAP	TS 1	int 1	TS 2	int 2	TS 3	int 3	TS 4	TSAP
4	3	2	1	0.0	68.1	23.9	67.1	30.5	60.2	21.3	49.6	0.9
4	3	1	2	0.0	68.1	23.9	67.1	30.5	62.9	24.1	66.6	0.9
4	2	3	1	0.0	68.1	23.9	71.8	31.8	67.4	21.3	49.6	0.9
4	2	1	3	0.0	68.1	23.9	71.8	31.8	61.1	31.8	67.7	0.9
4	1	2	3	0.0	68.1	23.9	60.5	33.9	81.7	31.8	67.7	0.9
4	1	3	2	0.0	68.1	23.9	60.5	33.9	66.2	24.1	66.6	0.9
3	4	2	1	0.0	64.4	22.4	70.4	30.5	60.2	21.3	49.6	0.9
3	4	1	2	0.0	64.4	22.4	70.4	30.5	62.9	24.1	66.6	0.9
3	2	4	1	0.0	64.4	22.4	67.7	30.4	71.0	21.3	49.6	0.9
3	2	1	4	0.0	64.4	22.4	67.7	30.4	67.8	33.8	65.1	0.9
3	1	2	4	0.0	64.4	22.4	64.1	34.9	70.9	33.8	65.1	0.9
3	1	<u>4</u>	2	0.0	64.4	22.4	64.1	34.9	64.6	24.1	<u>66.6</u>	0.9
2	3	4	1	0.0	71.1	21.1	68.7	30.4	71.0	21.3	49.6	0.9
2	3	1	4	0.0	71.1	21.1	68.7	30.4	67.8	33.8	65.1	0.9
2	4	3	1	0.0	71.1	21.1	77.5	31.8	67.4	21.3	49.6	0.9
2	4	1	3	0.0	71.1	21.1	77.5	31.8	61.1	31.8	67.7	0.9
2	1	4	3	0.0	71.1	21.1	73.5	37.9	63.9	31.8	67.7	0.9
2	1	3	4	0.0	71.1	21.1	73.5	37.9	79.1	33.8	65.1	0.9
1	3	2	4	0.0	57.7	26.3	73.5	34.9	70.9	33.8	65.1	0.9
1	3	4	2	0.0	57.7	26.3	73.5	34.9	64.6	24.1	66.6	0.9
1	2	3	4	0.0	57.7	26.3	81.5	37.9	79.1	33.8	65.1	0.9
1	2	4	3	0.0	57.7	26.3	81.5	37.9	63.9	31.8	67.7	0.9
1	4	2	3	0.0	57.7	26.3	67.2	33.9	81.7	31.8	67.7	0.9
1	4	3	2	0.0	57.7	26.3	67.2	33.9	66.2	24.1	66.6	0.9

Table S8: Calculated energy profile of cyclen inversion of $[Eu(do3ap)(H_2O)]^{2-}$. The most favourable pathway is in bold and the rate-determining step is <u>underlined</u>.

Figure S11: Energy profile calculated for the cyclen inversion of $[Eu(do3ap)(H_2O)]^{2-}$ at 25 °C. The lowest energy pathway is highlighted in red, while the experimental activation free energy is represented by a black dashed line.

i esponsible ioi		ciconversion process	(at 25 0).					
Anion	$\Delta S^{\dagger}_{\text{CycleSAP}}$							
	Overall	Rotation	Vibration					
dota	-3.28	-0.054	-3.23					
Hdo3ap	-8.77	0.033	-8.80					
do3ap	-14.6	0.12	-14.7					

Table S9: Contributions to the activation entropy (in J K^{-1} mol⁻¹) for the ring inversion process responsible for the SAP \rightarrow TSAP interconversion process (at 25 °C).

Figure S12. Calculated molecular structure of $[Eu(dota)(H_2O)]^- 2H_2O$ in SAP geometry. Hydrogen atoms bonded to carbon atoms are omitted for the sake of clarity.

Figure S13. Calculated molecular structure of $[Eu(do3ap)(H_2O)]^2 \cdot 2H_2O$ in SAP geometry. Hydrogen atoms bonded to carbon atoms are omitted for the sake of clarity.

Figure S14. Calculated molecular structure of $[Eu(Hdo3ap)(H_2O)]$ - $2H_2O$ in SAP geometry. Hydrogen atoms bonded to carbon atoms are omitted for the sake of clarity.