Supporting Information

**Spontaneous protein desorption from self-assembled monolayer (SAM)-coated gold nanoparticles**

Ranran Tian, Mengbo Luo* and Jingyuan Li*

Department of Physics, Zhejiang University, Hangzhou 310027, China
Fig. S1: The bottom view of two binding surfaces of HSA: plane A (a); plane B (b).

Fig. S2: The sketch of the 25% protonated SAM, the amine (-NH₂) and protonated amine (-NH₃⁺) groups are shown as light blue and blue spheres, respectively.

Fig. S3: The number of salt bridge between HSA and SAM in adsorption-50%.
Fig. S4: The number of *interlayer water* (a) and salt bridge between HSA and the SAM (b) in *adjustment-25%*.

Fig. S5: Some water molecules are in the vicinity of salt bridges formed by E442 with -NH$_3^+$ groups, and they form hydrogen bonds with the salt-bridge groups.

Fig. S6: The distance between the mass center of HSA and SAM surface in *adjustment-25%* (a) and *adsorption-50%* (b).
Fig. S7: The in-plane mean square displacement (MSD) of HSA in adsorption-25%.

Fig. S8: The number of salt bridge between HSA and SAM in adsorption-25%.

Fig. S9: Final configuration of HSA in adsorption-25%: side view (a); bottom view (b). Domains I, II and III are in blue, green and magenta, respectively. Acidic residues that
form salt bridges with SAM are colored in red.

Fig. S10: The distance between the mass center of HSA and SAM surface in adsorption-25%.

Fig. S11: The number of interlayer water during protein desorption.
Fig. S12: Water-mediated breakage of salt bridge. There are multiple water molecules around the salt bridge formed by Asp563 with -NH3+ group (a). Once the salt bridge is broken, the water molecule inserts in-between the salt-bridge groups, forming a water bridge (b).

Fig. S13: The in-plane mean square displacement (MSD) of HSA in adjustment -6.3%.

Fig. S14: The number of salt bridge formed by domains II and III with SAM during protein desorption.