Supplementary Information

for

Stereochemical Effects on Dynamics in Two-component Systems of Gelators with Perfluoroalkyl and Alkyl Chains as Revealed by Vibrational Circular Dichroism

Hisako Sato, a* Tomoko Yajima, b and Akihiko Yamagishi c

aEhime University, bOchanomizu University, cToho University

Contents:
1. Photos for gelation
2. The time change of VCD spectra for a CD3CN gel containing an enantiomeric mixture of CF7 and CH7
3. Sol-gel transition temperature for one- or two-component systems
1. Photos for gelation

Figure S1. The photos were taken (a) immediately after dissolving gelators at 100 °C, (b) after one minute, (c) after two minutes and (d) after attaining stable gel states, respectively. The photos of (b), (c) and (d) were taken at room temperature. A solvent was acetonitrile.
2. The time change of VCD spectra for a CD$_3$CN gel containing an enantiomeric mixture of CF7 and CH7.

Figure S2. The VCD (upper) and IR (lower) spectra of the CD$_3$CN gels containing RR-CF7/RR-CH7 (black solid line) or SS-CF7/SS-CH7 (grey line), respectively. The spectra were recorded at (a) 2 min, (b) 4 min, (c) 7 min and (d) 10 min after gelation. The initial and final spectra of the same samples were shown in the text (Figures 2 (a)-(c), respectively).
3. Sol-gel transition temperature for one- or two-component systems

Figure S3. The plots of sol-gel transition temperature against the ratio of components for two-component systems. The data for one-component systems were also included: *RR-CF7/RR-CH7* (solid circle), *RR-CF7/SS-CH7* (solid triangle), *RR-CH7* (open square) and *RR-CF7* (open triangle), respectively. The concentration of gelators was 0.017M-0.05M for *RR-CF7/RR-CH7*, 0.025M-0.03M for *RR-CF7/SS-CH7*, 0.017M for *RR-CH7* and 0.010M for *RR-CF7*, respectively. A solvent was acetonitrile: