Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Giant Negative Magnetoresitance in Ni(quinoline-8-selenoate)₂

Nicholas Black,^a Daiki Tonouchi^b, Michio M. Matsushita^b,* J. Derek Woollins^a,* Kunio Awaga^b and Neil Robertson^c*

Figure S1: Mass spectrum of $[Ni(qs)_2]$; acquired spectrum (top), theoretical isotope pattern (bottom).

Figure S2: PXRD obtained for [Ni(qs)₂].

Figure S3: Illustration of crystal-field splitting and d-orbital occupancy for d⁸ Ni(II) in ideal squareplanar (left) and octahedral (right) geometry, showing diamagnetic and paramagnetic character respectively.

Figure S4: χ -T⁻¹ (a) and χ ⁻¹-T plot (b) of the magnetic susceptibility of Ni(qs)₂. Temperatureindependent component (the contribution of diamagnetic component and ferromagnetic impurity) was evaluated and subtracted by setting the intersection of the linear region of χ -T⁻¹ to 0 (high-temperature approximation).

Figure S5: Powdered sample of [Ni(qs)₂] on an interdigitated circuit used for conductivity and magnetoresistance measurements.

Figure S6: Temperature dependence of the resistance of Ni(qs)₂ micro-crystals deposited on a inter-digitated micro-gap electrodes (a) and the Arrhenius plot from the obtained result (b). Measurements were carried through the current-measurement with a constant applied-voltage (1V) condition. Activation energy $E_a = 121$ meV was estimated from the Arrhenius plot between

Figure S7: Absorbance of [Ni(qs)₂] determined by diffuse reflectance spectroscopy.

Figure S8: Cyclic voltammogram of solid $[Ni(qs)_2]$. Measured in 0.1 M solution of $[TBA][PF_6]$ in acetonitrile. Sample material was pseudo-dropcast onto 3mm Pt working electrode surface and allowed to dry before measurement was made.

Figure S9: Log-log plot of the *I*-*V* characteristics (Figure 3) of $Ni(qs)_2$ in the lower temperatures. The linear relation in the log-log plot means the higher-order *I*-*V* characteristics.

Figure S10: Density of states (DOSs) of the Ni(qs)₂. 8mer, obtained from the calculation result for Figures 5 and 6 (UB3LYP/TZVP). Occupied band edges (just below the Fermi energy, *ca.* 3eV) have big energy difference (>0.5eV) between α and β spins. Spin-polarized transport is expected from this band structure. This big spin-polarization is caused by the local spin on Ni(II) ions.