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Figure S1: Mass spectrum of [Ni(qgs),]; acquired spectrum (top), theoretical isotope

pattern (bottom).
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Figure S2: PXRD obtained for [Ni(gs),].
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Figure S3: lllustration of crystal-field splitting and d-orbital occupancy for d® Ni(ll) in ideal square-
planar (left) and octahedral (right) geometry, showing diamagnetic and paramagnetic character
respectively.
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Figure S4: y-T-! (a) and y!-T plot (b) of the magnetic susceptibility of Ni(gs), Temperature-
independent component (the contribution of diamagnetic component and ferromagnetic impurity)
was evaluated and subtracted by setting the intersection of the linear region of x-T-! to 0 (high-
temperature approximation).

Figure S5: Powdered sample of [Ni(gs),] on an interdigitated circuit used for conductivity
and magnetoresistance measurements.
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Figure S6: Temperature dependence of the resistance of Ni(qs), micro-crystals deposited on a
inter-digitated micro-gap electrodes (a) and the Arrhenius plot from the obtained result (b).
Measurements were carried through the current-measurement with a constant applied-voltage
(1V) condition. Activation energy £, = 121 meV was estimated from the Arrhenius plot between
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Figure S7: Absorbance of [Ni(gs),] determined by diffuse reflectance spectroscopy.
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Figure S8: Cyclic voltammogram of solid [Ni(gs),]. Measured in 0.1 M solution of
[TBA][PF¢] in acetonitrile. Sample material was pseudo-dropcast onto 3mm Pt
working electrode surface and allowed to dry before measurement was made.
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Figure S9: Log-log plot of the /-V characteristics (Figure 3) of Ni(gs), in the lower temperatures.
The linear relation in the log-log plot means the higher-order /-V characteristics.
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Figure S10: Density of states (DOSs) of the Ni(gs),. 8mer, obtained from the calculation
result for Figures 5 and 6 (UB3LYP/TZVP). Occupied band edges (just below the Fermi
energy, ca. 3eV) have big energy difference (>0.5eV) between a and B spins. Spin-
polarized transport is expected from this band structure. This big spin-polarization is
caused by the local spin on Ni(I) ions.



