Largely Enhanced Dielectric Constant of PVDF Nanocomposites through a Core-Shell Strategy

Minhao Yanga, Hang Zhaob, Chaohe Hua, Paul Haghi-Ashtiania, Delong He\textsuperscript{* a}, Zhi-Min Dangc, Jinbo Bai\textsuperscript{* a}

aLaboratoire de Mécanique des Sols, Structures et Matériaux, CNRS UMR 8579, Centrale-Supélec, Université Paris-Saclay, 3 Rue Joliot Curie, Gif-sur-Yvette, 91190, France

bState Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Northwest University, Xi’an 710069, People’s Republic of China

cDepartment of Electrical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

*Corresponding author.

E-mail addresses: jinbo.bai@centralesupelec.fr (J. Bai)
delong.he@centralesupelec.fr (D. He)
Fig. S1 XRD patterns of TiO$_2$@C NWs hybrids with different carbon shell thickness.

Fig. S2 Raman spectra of TiO$_2$@C NWs hybrids with different carbon shell thickness.
Fig. S3 FT-IR spectra of (a) PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites with different filler loadings and (b) TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites with different hybrids at the same filler loading (15 vol. %); (c) The calculated relative content of α and β phase in PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites as a function of filler loading; (d) The calculated relative content of α and β phase in TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites at 15 vol. % filler loading as a function of CVD time.
Fig. S4 XRD patterns of (a) PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites with different filler loadings and (b) TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites with different hybrids at the same filler loading (15 vol. %); (c) The calculated content of β phase in total crystalline phase of PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites as a function of filler loading; (d) The calculated content of β phase in total crystalline phase of TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites at 15 vol. % filler loading as a function of CVD time.
Fig. S5 Origin’s multiple peak separation fitting results of PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites with different filler loadings.

Fig. S6 Origin’s multiple peak separation fitting results of TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites with different hybrids at the same filler loading (15 vol. %).
Fig. S7 Frequency dependence of the dielectric loss values of TiO$_2$@C-5 NWs/PVDF, TiO$_2$@C-15 NWs/PVDF and TiO$_2$@C-45 NWs/PVDF nanocomposites at different filler loadings.

Fig. S8 Typical variation of dielectric loss values (103 Hz) of TiO$_2$ NWs/PVDF, TiO$_2$@C-5 NWs/PVDF, TiO$_2$@C-15 NWs/PVDF, and TiO$_2$@C-45 NWs/PVDF nanocomposites as a function of carbon shell thickness at different filler loadings (15 vol. % and 20 vol. %).
Fig. S9 Dependence of the dielectric loss and AC conductivity of TiO$_2$@C-5 NWs/PVDF, TiO$_2$@C-15 NWs/PVDF, and TiO$_2$@C-45 NWs/PVDF nanocomposites on the volume fraction of the TiO$_2$ NWs core and carbon shell for the whole nanocomposites (10^3 Hz).

Fig. S10 The D-E loops of (a) PVDF and TiO$_2$@C-15 NWs/PVDF nanocomposites with different filler loadings (b) TiO$_2$ NWs/PVDF and TiO$_2$@C NWs/PVDF nanocomposites with different hybrids at the same filler loading (5 vol. %) at 10 Hz.
Fig. S11 Comparison of dielectric properties (10^3 Hz) of percolative nanocomposites with different types of nano-fillers: TiO$_2$@C NWs, 2.5-20 vol. %; Flower-like TiO$_2$-C, 15 and 20 vol. %; BT@C, 5-30 vol. %; BT-Ag, 7.6 and 18 vol. %; PPy nanoclips, 3-9 wt. %; rGO-CNTs, 0.02-0.144 wt. % [1, 2, 3, 4, 5].

The derivation process of volume fraction of carbon shell (α):

The volume fraction of carbon shell in the hybrids (α) could be calculated from the weight fraction of carbon shell (β) as described below. The weight fraction of carbon shell in the hybrids could be obtained from the TGA curves. The equation for the calculation of α could be expressed as below.

$$\alpha = \frac{V_c}{V_h} = \frac{V_c}{V_c + V_{TiO2}} = \frac{\beta}{\beta M/\rho_c + (1 - \beta) M/\rho_{TiO2}} = \frac{\beta/\rho_c}{\beta/\rho_c + (1 - \beta)/\rho_{TiO2}}$$

where V_c, V_{TiO2}, and V_h are the volume of carbon shell, TiO$_2$ core, and hybrids, respectively. The ρ_c and ρ_{TiO2} represent the density of carbon shell and TiO$_2$ core, respectively, and M is the mass of hybrids. The ρ_c and ρ_{TiO2} values are selected as 2.00 g cm$^{-3}$ and 3.90 g cm$^{-3}$, respectively. The β is directly extracted from the TGA results.
Then the corresponding numerical values are put into the above-mentioned equation, and then the corresponding α could be obtained. The α for the TiO$_2$@C-5 NWs, TiO$_2$@C-15 NWs, and TiO$_2$@C-45 NWs are 8.34 %, 27.99 %, and 40.95 %, respectively.

