L-edge sum rule analysis on 3d transition metal sites: from d10 to d0 and towards application to extremely dilute metallo-enzymes

Hongxin Wang1,2,*, Stephan Friedrich3, Lei Li4, Ziliang Mao1, Pinghua Ge5, Mahalingam Balasubramanian6, and Daulat S. Patil2

1 Department of Chemistry, University of California, Davis, CA 95616, USA
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3 Lawrence Livermore National Laboratory, Advanced Detectors Group, 7000 East Avenue, Livermore, CA 94550, USA
4 Synchrotron Radiation Nanotechnology Center, University of Hyogo, 1-490-2 Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
5 Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801, USA
6 Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA

Supplemental Information
Figure S1 The Ni L XAS for Ni metal. The L XAS feature is similar with a 3d₈ compound, such as NiF₂.
Figure S2 The Ni L XAS for ultra-covalent (Ph₄As)₂Ni[S₂C₂(CF₃)₂]₂ (50.5%), (ⁿBu₄N)Ni[S₂C₂(CF₃)₂]₂ (44.0%) and Ni[S₂C₂(CF₃)₂]₂ (38.5%) complexes.
Figure S3 The Mn K XAS for MnO (green), Mn$_2$O$_3$ (red) and KMnO$_4$ (black), including their EXAFS regions.