Supporting Information

Ligand Substitution and Conformational Effects on the Ultrafast Luminescent Decay of [Re(CO)₃(phen)(L)]⁺ (L=imidazole, pyridine): Nonadiabatic Quantum Dynamics

Maria Fumanal, Etienne Gindensperger, and Chantal Daniel

Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 4 Rue Blaise Pascal, 67000 Strasbourg (France)

Section S1.

The intrastate, $\kappa^{(n)}$, and interstate, $\lambda^{(n,m)}$ coupling constants, where *n* and *m* label the electronic states, are extracted from the gradients and Hessians of the excited states, respectively, here evaluated at the Franck-Condon point (FC, $Q_i = 0$) and correspond to the following expressions, where V_n is the adiabatic potential energy surface of the state *n* obtained from quantum chemistry calculations.

For C_s symmetry with a' and a'' modes, it comes:

$$\lambda_i^{(n,m)} = \left(\frac{1}{8} \frac{\partial^2}{\partial Q_i^2} (|V_m - V_n|^2)\right)^{1/2} \bigg|_0, n \neq m$$

The later equation gives:

 $\kappa_i^{(n)} = \frac{\partial V_n}{\partial \Omega_i}$ for $i \in a$ '

$$\lambda_i^{(n,m)} = \left(\frac{\varepsilon_m - \varepsilon_n}{4} \left(\frac{\partial^2}{\partial Q_i^2} V_m - \frac{\partial^2}{\partial Q_i^2} V_n\right)\right)^{1/2} \bigg|_0$$

for $i \in a$ and states *n* and *m* of different spatial symmetry and for $i \in a$ and *n* and *m* of same spatial symmetry, with $n \neq m$.

 ε_n is the "spin-orbit free" vertical transition energy of state *n*.

Section S2.

The W matrix used in this work reads as follows, where the star stands for the conjugate transpose:

$$\mathbf{W} = \begin{pmatrix} \mathbf{W}^{\text{T1},\text{T1}} & \mathbf{W}^{\text{T1},\text{T2}} & \mathbf{W}^{\text{T1},\text{S1}} & \mathbf{W}^{\text{T1},\text{T3}} & \mathbf{W}^{\text{T1},\text{S2}} & \mathbf{W}^{\text{T1},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{T2}} & \mathbf{W}^{\text{T2},\text{T2}} & \mathbf{W}^{\text{T2},\text{S1}} & \mathbf{W}^{\text{T2},\text{T3}} & \mathbf{W}^{\text{T2},\text{S2}} & \mathbf{W}^{\text{T2},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{S1}} & \mathbf{W}^{*\text{T2},\text{S1}} & \mathbf{W}^{\text{S1},\text{S1}} & \mathbf{W}^{\text{S1},\text{T3}} & \mathbf{W}^{\text{S1},\text{S2}} & \mathbf{W}^{\text{S1},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{T3}} & \mathbf{W}^{*\text{T2},\text{T3}} & \mathbf{W}^{*\text{S1},\text{T3}} & \mathbf{W}^{\text{T3},\text{T3}} & \mathbf{W}^{\text{T3},\text{S2}} & \mathbf{W}^{\text{S1},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{S2}} & \mathbf{W}^{*\text{T2},\text{S2}} & \mathbf{W}^{*\text{S1},\text{S2}} & \mathbf{W}^{*\text{T3},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{S2}} & \mathbf{W}^{*\text{T2},\text{T4}} & \mathbf{W}^{*\text{S1},\text{S2}} & \mathbf{W}^{*\text{T3},\text{S2}} & \mathbf{W}^{\text{S2},\text{T4}} \\ \mathbf{W}^{*\text{T1},\text{T4}} & \mathbf{W}^{*\text{T2},\text{T4}} & \mathbf{W}^{*\text{S1},\text{T4}} & \mathbf{W}^{*\text{T3},\text{T4}} & \mathbf{W}^{*\text{S2},\text{T4}} & \mathbf{W}^{*\text{T4},\text{T4}} \end{pmatrix}$$

Note that we explicitly consider the triplet's components, yielding a fourteen states **W** matrix. The different sub-matrices are defined as follows:

$$\mathbf{W}^{\mathbf{n},\mathbf{n}} = \varepsilon_n + \sum_{\mathbf{i} \in \mathbf{a}'} \kappa_i^{(n)} Q_i$$

$$\mathbf{W}^{\mathrm{S1,S2}} = \sum_{\mathbf{j} \in \mathbf{a}^{"}} \lambda_{\mathbf{j}}^{(\mathrm{S1,S2})} Q_{\mathbf{j}}$$

$$\mathbf{W}^{\mathrm{Sn}(\mathrm{A}\prime),\mathrm{Tm}(\mathrm{A}\prime)} = \mathbf{W}^{\mathrm{Sn}(\mathrm{A}^{"}),\mathrm{Tm}(\mathrm{A}^{"})} = (0; \eta_{\mathrm{Sn},\mathrm{Tm}}; 0)$$

$$\mathbf{W}^{\mathrm{Tm}(\mathrm{A}\prime),\mathrm{Sn}(\mathrm{A}\prime)} = \mathbf{W}^{\mathrm{Tm}(\mathrm{A}^{"}),\mathrm{Sn}(\mathrm{A}^{"})} = \begin{pmatrix} 0\\ \eta_{\mathrm{Sn},\mathrm{Tm}}\\ 0 \end{pmatrix}$$

$$\mathbf{W}^{\mathrm{Sn}(\mathrm{A}\prime),\mathrm{Tm}(\mathrm{A}'')} = \mathbf{W}^{\mathrm{Sn}(\mathrm{A}''),\mathrm{Tm}(\mathrm{A}\prime)} = \left(\eta_{\mathrm{Sn},\mathrm{Tm}}^{*}; 0; \eta_{\mathrm{Sn},\mathrm{Tm}}\right)$$

$$\mathbf{W}^{\mathrm{Tm}(\mathrm{A}'),\mathrm{Sn}(\mathrm{A}'')} = \mathbf{W}^{\mathrm{Tm}(\mathrm{A}''),\mathrm{Sn}(\mathrm{A}')} = \begin{pmatrix} \eta_{\mathrm{Sn},\mathrm{Tm}}^{*} \\ 0 \\ \eta_{\mathrm{Sn},\mathrm{Tm}} \end{pmatrix}$$

$$\mathbf{W}^{\mathrm{Tn}(A'),\mathrm{Tm}(A'')} = \mathbf{W}^{\mathrm{Tn}(A''),\mathrm{Tm}(A')} = \begin{pmatrix} \sum_{j \in a''} \lambda_j^{(\mathrm{Tn},\mathrm{Tm})} Q_j & \eta_{\mathrm{Tn},\mathrm{Tm}} & 0 \\ -\eta_{\mathrm{Tn},\mathrm{Tm}}^* & \sum_{j \in a''} \lambda_j^{(\mathrm{Tn},\mathrm{Tm})} Q_j & \eta_{\mathrm{Tn},\mathrm{Tm}} \\ 0 & -\eta_{\mathrm{Tn},\mathrm{Tm}}^* & \sum_{j \in a''} \lambda_j^{(\mathrm{Tn},\mathrm{Tm})} Q_j \end{pmatrix}$$

 $\mathbf{W}^{\mathrm{Tn}(\mathrm{A}^{\prime\prime}),\mathrm{Tm}(\mathrm{A}^{\prime\prime})} = \mathbf{W}^{\mathrm{Tn}(\mathrm{A}\prime),\mathrm{Tm}(\mathrm{A}\prime)}$

$$= \begin{pmatrix} \sum_{i \in a'} \lambda_i^{(\text{Tn,Tm})} Q_i + \eta_{\text{Tn,Tm}} & 0 & 0 \\ 0 & \sum_{i \in a'} \lambda_i^{(\text{Tn,Tm})} Q_i & 0 \\ 0 & 0 & \sum_{i \in a'} \lambda_i^{(\text{Tn,Tm})} Q_i + \eta_{\text{Tn,Tm}}^* \end{pmatrix}$$

where the SOC $\eta_{n,m}$ constants (complex-valued) are obtained from electronic structure calculations at FC. The latter are kept constant in the wavepacket propagations. Notice that, due to symmetry selection rules, only a' modes will give non-zero $\kappa_i^{(n)}$ and interstate coupling $\lambda_i^{(n,m)}$ between state of the same spacial symmetry, while only a'' mode will couple states of different special symmetries.

Section S3.

Number of basis functions for the primitive basis as well as for the time-dependent (SPF) basis used in the MCTDH calculation for the lowest 14 electronic states of $[Re(CO)_3(phen)(L)]^+$ using the 15-modes model Hamiltonian described in the Results section of the main text. The Q_i labels correspond to $[Re(CO)_3(phen)(im)]^+$ conformer A but apply for all the other simulations.

Modes	Primitive basis	SPF basis
(Q9, Q22, Q27)	(23, 19, 19)	(11,11,15,11,15,11,11,11,11,11,11,11,9,9,9)
(Q8, Q24, Q ^{eff} 36-37)	(13, 13, 13)	(8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7)
(Q38, Q70, Q81)	(17, 17, 17)	(8, 8, 11, 8, 11, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7)
(Q88, Q91, Q93)	(17, 17, 17)	(8, 8, 11, 8, 11, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7)
(Q18, Q32, Q77)	(21, 19, 19)	(9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7)

Re(CO) ₃ (phen)(imi) ⁺									
	Conf	A			Conf	В			
70° 0.006					>	1			
79a' -0.09	96	40	6a" -0.085	124a -0.0	96	1	25a -0.086		
	, Š	Ħ	•	Å.	•	••••	****		
77a' -0.252	78a' -0.	245	45a" -0.238	121a -0.252	122a -0	0.244	123a -0.240		

43a" -0.276	76a' -0.	266	44a" -0.258	118a -0.276	119a -0	.266	120a -0.260		

Figure S1. Kohn–Sham Frontier Orbitals of $Re(CO)_3(phen)(imi)^+$ conformer A (left) and B (right) in Water in the S₀ Electronic Ground State. Orbital energies are in a.u.

	Re(CO) ₃ (phen)(py) ⁺									
	Conf	ΓA			Conf	В				
82a' -0.097				- S						
82a' -0.09	97	4	6a" -0.085	77a' -0.0	97	5	1a" -0.086			
	ب چ	¥	1 000		•	e ^{re,}	and a			
80a' -0.253	81a' -0	0.247	45a" -0.242	75a' -0.255	50a" -0	.246	76a' -0.244			
		V	Ŷ ¥		A					
43a" -0.285	44a" -(0.276	79a' -0.268	48a" -0.286	49a" -0	.276	74a' -0.266			

Figure S2. Kohn–Sham Frontier Orbitals of Re(CO)₃(phen)(py)⁺ conformer A (left) and B (right) in Water in the S₀ Electronic Ground State. Orbital energies are in a.u.

 $Re(CO)_3(phen)(py)^+$ conformer A

Figure S3. Displacement contributions of the a' normal modes for each excited state considered herein of $\text{Re}(\text{CO})_3(\text{phen})(\text{im})^+$ conformer A, and $\text{Re}(\text{CO})_3(\text{phen})(\text{py})^+$ conformers A and B. Contribution of the modes between 80 - 850 cm⁻¹.

-3,0

Figure S4. Displacement contributions of the a' normal modes for each excited state considered herein of $\text{Re}(\text{CO})_3(\text{phen})(\text{im})^+$ conformer A, and $\text{Re}(\text{CO})_3(\text{phen})(\text{py})^+$ conformers A and B. Contribution of the modes between 1165 - 2045 cm⁻¹.

Figure S5. Energy-scaled contributions of the a' normal modes for each excited state considered herein of $\text{Re}(\text{CO})_3(\text{phen})(\text{im})^+$ conformer A, and $\text{Re}(\text{CO})_3(\text{phen})(\text{py})^+$ conformers A and B. Contribution of the modes between 80 - 850 cm⁻¹.

Figure S6. Energy-scaled contributions of the a' normal modes for each excited state considered herein of $\text{Re}(\text{CO})_3(\text{phen})(\text{im})^+$ conformer A, and $\text{Re}(\text{CO})_3(\text{phen})(\text{py})^+$ conformers A and B. Contribution of the modes between 1165 - 2045 cm⁻¹.

Figure S7. Diabatic electronic populations of the six low-lying excited states of $[Re(CO)_3(phen)(im)]^+$ conformer A as a function of time including interstate coupling between same symmetry states when using the 15-modes model (left) and the 11-modes model (right) as described in the main text.

Figure S8. Diabatic electronic populations of the six low-lying excited states of $[Re(CO)_3(phen)(py)]^+$ conformer A (top) and B (bottom) as a function of time including interstate coupling between same symmetry states when using the 15-modes model (left) and the 11-modes model (right) as described in the main text.

Table S1. TD-DFT/TDA transition energies (in eV), wavelengths of absorption (in nm) and oscillator strengths *f* associated to the low-lying excited states of $\text{Re}(\text{CO})_3(\text{phen})(\text{im})^+$. The main one-electron excitations are indicated following the orbital notation depicted in Fig S1.

		A confor	rmer					B confe	ormer		
S	ltate	One-electron excitation	Trans. E	Wave length	f	S	tate	One-electron excitation	Trans. E	Wave length	f
T ₁	A ³ A″	83% 45a"-79a'	2.98	416		T ₁	A ³ A	87% 123-124	3.01	412	
T ₂	A ³ A′	84% 78a'-79a'	3.07	403		T ₂	B ³ A	57% 122-124 16% 123-125	3.05	406	
S1	a¹A″	99% 45a"-79a'	3.12	398	0.002	T ₃	C ³ A	37% 123-125 34% 122-124 20% 119-125	3.25	382	
T ₃	B ³ A″	47% 78a'-46a" 32% 76a'-46a"	3.24	382		S1	b¹A	56% 123-124 41% 122-124	3.27	380	0.032
S2	b¹A′	66% 78a'-79a' 22% 45a"-46a" 11% 77a'-79a'	3.40	365	0.054	S ₂	c ¹ A	56% 122-124 38% 123-124	3.33	373	0.075
T ₄	B ³ A′	82% 77a'-79a'	3.42	363		T ₄	D ³ A	75% 121-124 15% 119-124	3.43	362	
T ₅	C ³ A′	82% 45a"-46a"	3.45	359		T ₅	E ³ A	38% 119-124 27% 122-125 20% 121-124	3.50	357	
S ₃	c ¹ A′	80% 77a'-79a'	3.46	358	0.003	S ₃	d¹A	97% 121-124	3.48	357	0.000
T ₆	C ³ A″	73% 43a"-79a'	3.56	348		T ₆	F ³ A	48% 122-125 32% 119-124	3.59	345	
S ₄	d¹A′	59% 45a"-46a" 30% 78a'-79a'	3.56	349	0.117	S ₄	e ¹ A	91% 123-125	3.61	344	0.031
T ₇	D ³ A′	84% 76a'-79a'	3.57	347		T ₇	G ³ A	72% 118-124	3.61	343	
S_5	b¹A″	86% 78a'-46a"	3.76	329	0.024	S_5	f¹A	87% 122-125	3.67	338	0.046
T ₈	D ³ A″	27% 78a'-46a" 28% 76a'-46a" 33% 77a'-46a"	3.82	325		T ₈	H³A	41% 119-125 28% 123-125	3.73	332	
S ₆	c ¹ A″	98% 44a"-79a'	3.83	324	0.002	T ₉	I ³ A	85% 120-124	3.81	325	
T ₉	E ³ A″	71% 44a"-79a' 16% 43a"-79a'	3.84	323		S ₆	g¹A	95% 120-124	3.83	324	0.019
T ₁₀	E ³ A′	67% 43a"-46a"	3.90	320		T ₁₀	J³A	82% 121-125	3.87	320	
S ₇	d¹A″	95% 77a'-46a"	3.87	320	0.003	T ₁₁	K ³ A	83% 118-125	3.91	317	
S ₈	e ¹ A'	77% 76a'-79a'	4.02	308	0.000	S ₇	h ¹ A	99% 121-125	3.86	321	0.001
S ₉	f ¹ A'	90% 44a"-46a"	4.19	296	0.011	S ₈	i ¹ A	79% 119-124	4.03	307	0.003
S ₁₀	e ¹ A″	42% 43a"-79a' 53% 76a'-46a"	4.28	289	0.003	T ₁₂	L ³ A	73% 122-127 14% 123-127	4.01	313	

Table S2. TD-DFT/TDA transition energies (in eV), wavelengths of absorption (in nm) and oscillator strengths *f* associated to the low-lying excited states of $\text{Re}(\text{CO})_3(\text{phen})(\text{py})^+$. The main one-electron excitations are indicated following the orbital notation depicted in Fig S2.

		A confo	rmer			B conformer					
S	tate	One-electron excitation	Trans. E	Wave length	f	S	tate	One-electron excitation	Trans. E	Wave length	f
T ₁	A ³ A''	75% 45a"-82a'	3.03	409		T ₁	A ³ A'	86% 76a'-77a'	3.06	406	
T ₂	A ³ A'	84% 81a'-82a'	3.07	403		T ₂	A ³ A''	56% 50a"-77a' 19% 76a'-51a" 15% 74a'-51a"	3.07	403	
S ₁	a¹A''	99% 45a"-82a'	3.21	386	0.002	T ₃	B ³ A''	37% 76a'-51a" 36% 50a"-77a' 24% 74a'-51a"	3.28	378	
T ₃	B³A''	46% 81a'-46a" 27% 79a'-46a" 20% 45a"-82a'	3.27	379		S ₁	a¹A''	98% 50a"-77a'	3.32	373	0.001
T ₄	B ³ A'	88% 80a'-82a'	3.42	362		S ₂	b¹A'	90% 76a'-77a'	3.39	366	0.112
S ₂	b¹A'	68% 81a'-82a' 22% 80a'-82a'	3.43	362	0.067	T ₄	B ³ A'	91% 75a'-77a'	3.49	356	
S ₃	c ¹ A'	74% 80a'-82a' 14% 81a'-82a'	3.49	355	0.025	T ₅	C ³ A'	72% 74a'-77a'	3.51	353	
T ₅	C ³ A'	79% 45a"-46a"	3.55	350		S ₃	c ¹ A'	97% 75a'-77a'	3.52	352	0.006
T ₆	C ³ A''	89% 44a"-82a'	3.58	346		T ₆	C ³ A''	86% 49a"-77a'	3.61	343	
T ₇	D ³ A'	74% 79a'-82a' 15% 45a"-46a"	3.60	344		T ₇	D ³ A'	82% 50a"-51a" 11% 74a'-77a'	3.63	342	
S ₄	d¹A'	79% 45a"-46a" 15% 81a'-82a'	3.66	339	0.097	S ₄	d¹A'	87% 50a"-51a"	3.72	333	0.067
T ₈	E ³ A'	80% 45a"-47a"	3.74	331		S_5	b¹A''	90% 76a'-51a"	3.72	333	0.025
S ₅	b¹A''	84% 81a'-46a"	3.81	325	0.023	T ₈	D³A''	55% 74a'-51a" 40% 76a'-51a"	3.81	325	
T ₉	D³A"	49% 80a'-46a" 28% 81a'-46a" 21% 79a'-46a"	3.85	322		T ₉	E ³ A'	84% 49a"-51a"	3.91	317	
T ₁₀	F ³ A'	88% 44a"-46a"	3.91	317		T ₁₀	E ³ A''	99% 75a'-51a"	3.92	316	
S ₆	c¹A''	93% 80a'-46a"	3.92	317	0.004	S ₆	c¹A''	99% 75a'-51a"	3.93	316	0.000
T ₁₁	E³A''	47% 80a'-46a" 40% 79a'-46a"	3.95	314		T ₁₁	F ³ A'	73% 76a'-78a'	3.97	312	
T ₁₂	F ³ A''	34% 80a'-47a" 26% 81a'-47a" 20% 80a'-48a"	4.02	309		S ₇	e ¹ A'	80% 74a'-77a'	4.03	308	0.004
S ₇	e ¹ A'	84% 79a'-82a'	4.04	307	0.000	T ₁₂	G ³ A'	83% 50a"-52a"	4.03	308	
T ₁₃	G³A''	46% 81a'-47a" 14% 80a'-47a"	4.07	305		T ₁₃	F ³ A''	45% 75a'-52a" 39% 76a'-52a"	4.11	302	

Table S3. TD-DFT/TDA transition energies (in eV), wavelengths of absorption (in nm), oscillator strengths *f* associated to the low-lying "spin-orbit" states E_i of Re(CO)₃(phen)(im)⁺ (top) and Re(CO)₃(phen)(py)⁺ (bottom) conformer A and B in water. The composition of each state is given as function of the singlet and triplet components reported in Tables S1 and S2.

				R	$Re(CO)_3($	phen)(ir	n)+			
		A cor	nformer				B con	former		
	State	Composition	Trans. E (eV)	Wave length (nm)	f	State	Composition	Trans. E (eV)	Wave length (nm)	f
E1	Α''	T1 75% T2 18%	2.91	426	0.000	А	T1 60% T2 28%	2.94	421	0.000
E2	Α'	T1 75% T2 18%	2.92	425	0.001	А	T1 60% T2 30%	2.95	421	0.000
E3	Α'	T1 90%	2.94	422	0.003	А	T1 85%	2.97	417	0.005
E4	A''	T2 48% S1 42%	2.99	415	0.001	А	T2 83%	3.01	412	0.005
E5	A''	T2 75% T1 20%	3.09	401	0.000	А	T2 64% T1 21%	3.08	403	0.000
E6	Α'	T2 75% T1 20%	3.09	401	0.000	А	T2 65% T1 30%	3.08	403	0.000
E7	A''	S1 48% T2 50%	3.15	394	0.001	Α	T3 65% S1 12%	3.20	388	0.008
E8	Α'	T3 90%	3.22	385	0.004	А	T3 82%	3.24	383	0.000
E9	Α''	T3 88%	3.24	383	0.000	А	T3 84%	3.24	383	0.000
E10	Α'	T3 88%	3.24	383	0.000	Α	S1 47% S2 12%	3.25	382	0.024
E11	Α'	S2 59% T4 19%	3.37	368	0.033	Α	S2 52% T3 20%	3.33	372	0.043
E12	A''	T5 60% T4 24%	3.39	366	0.001	А	T4 60% T5 22%	3.42	363	0.000
E13	A''	T5 56% T4 30%	3.39	365	0.001	А	T4 42% S3 16%	3.42	362	0.001
E14	Α'	T5 56% T4 19%	3.40	365	0.003	Α	T5 28% T4 21%	3.44	361	0.010

				R	$Re(CO)_3($	phen)(p	y)+			
		A cor	nformer				B con	former		
	State	Composition	Trans. E (eV)	Wave length (nm)	f	State	Composition	Trans. E (eV)	Wave length (nm)	f
E1	Α''	T1 65% T2 26%	2.96	419	0.000	Α''	T1 52% T2 38%	2.98	416	0.000
E2	Α'	T1 65% T2 27%	2.96	419	0.002	Α'	T1 54% T2 38%	2.98	416	0.000
E3	Α'	T1 89%	2.99	415	0.003	Α''	T1 86%	3.02	411	0.000
E4	Α''	T2 70% S1 22%	3.02	411	0.000	Α'	T2 88%	3.04	408	0.007
E5	A''	T2 66% T1 29%	3.10	400	0.000	A''	T2 58% T1 38%	3.10	400	0.000
E6	Α'	T2 67% T1 30%	3.10	400	0.000	Α'	T2 58% T1 38%	3.10	400	0.000
E7	A''	S1 59% T2 28%	3.20	388	0.001	Α'	T3 74% S2 10%	3.24	383	0.011
E8	Α'	T3 85%	3.24	382	0.003	Α''	T3 84%	3.27	379	0.000
E9	Α''	T3 86%	3.26	381	0.000	Α'	T3 85%	3.27	379	0.000
E10	Α'	T3 88%	3.26	380	0.001	A''	S1 60% T4 15%	3.28	379	0.001
E11	Α'	S2 34% T4 33%	3.40	364	0.025	Α'	S2 61% T3 18%	3.39	365	0.069
E12	A''	T4 66% T5 12%	3.43	361	0.000	A''	T5 40% T4 40%	3.46	359	0.000
E13	Α'	S2 31% T5 19%	3.45	360	0.025	Α'	T5 44% S3 22%	3.47	358	0.002
E14	A''	T4 64% T5 15%	3.46	358	0.001	A''	T5 40% S1 17%	3.50	354	0.003

Table S4. Intrastate coupling values $\kappa^{(n)}$ (in eV) associated with each excited state *n*, and interstate coupling values $\lambda^{(n,m)}$ (in eV) between same symmetry states (top) and different symmetry states (bottom), determined for the selected a' and a'' normal modes, respectively Re(CO)₃(phen)(im)⁺ conformer A. The frequencies ω (in cm⁻¹) are indicated.

a'	S1	S2	T1		T2		Т3	Τ4	T1/T3	T2/T4
93	0.0228	-0.0190	0.017	'4	-0.0166	-0.	0041	-0.0029	0.0000	0.0076
235	-0.0573	-0.0388	-0.044	17	-0.0289	-0.	0229	-0.0179	0.0095	0.0000
439	0.0095	-0.0023	0.012	3	-0.0062	-0.	0608	0.0119	0.0189	0.0000
498	-0.0892	-0.0786	-0.077	77	-0.0562	-0.	0317	-0.0883	0.0138	0.0226
552	0.0149	-0.0019	0.011	.1	-0.0244	-0.	0112	0.0049	0.0185	0.0205
637	-0.0297	0.0375	-0.023	39	0.0315	0.	0089	-0.0019	0.0189	0.0000
1174	0.0723	0.0379	0.059)3	0.0469	-0.	0652	0.0539	0.0414	0.0000
1336	0.1065	0.1044	0.111	.9	0.1517	0.	1510	0.1116	0.0000	0.0000
1444	0.0827	0.0921	0.091	.9	0.1161	0.	1806	0.0809	0.0373	0.0189
1554	-0.01838	-0.1254	-0.172	26	-0.1687	0.	0539	-0.1510	0.0462	0.0000
1623	0.1294	0.0673	0.113	9	0.0907	-0.	0808	0.0917	0.0481	0.0000
1660	-0.0499	0.0016	-0.011	10	0.0572	0.	2367	-0.0224	0.0821	0.0000
а"		S1/S2			T1/T2			T2/T3	T	3/T4
90		0.0158		0.0061				0.0000	0.	0129
475	5	0.0195			0.0378		0.0000		0.0057	
626	*	0.0393			0.0226			0.0000	0.	0349

Table S5. Intrastate coupling values $\kappa^{(n)}$ (in eV) associated with each excited state *n*, and interstate coupling values $\lambda^{(n,m)}$ (in eV) between same symmetry states (top) and different symmetry states (bottom), determined for the selected a' and a'' normal modes of Re(CO)₃(phen)(py)⁺ conformer A, respectively. The frequencies ω (in cm⁻¹) are indicated.

a'	S1	S2	T1	T2	Т3	T4	T1/T3	T2/T4
95	-0.0169	0.0306	-0.0090	0.0170	0.0032	0.0166	0.0040	0.0000
219	-0.0336	-0.0234	-0.0342	-0.0314	-0.0234	-0.0113	0.0000	0.0205
434	-0.0191	-0.0092	-0.0158	0.0027	0.0524	-0.0216	0.0332	0.0130
498	0.0913	0.0811	0.0675	0.0503	0.0375	0.0858	0.0220	0.0239
550	0.0040	-0.0161	0.0014	-0.0257	-0.0095	-0.0112	0.0162	0.0210
636	0.0407	-0.0455	0.0267	-0.0256	-0.0003	-0.0061	0.0213	0.0000
1166	-0.0605	-0.0463	-0.0373	-0.0382	0.0575	-0.0524	0.0480	0.0000
1333	0.1068	0.1070	0.1120	0.1556	0.1490	0.1127	0.0000	0.0000
1443	0.0758	0.0811	0.0956	0.1152	0.1715	0.0727	0.0467	0.0307
1551	0.1843	0.1490	0.1565	0.1677	-0.0413	0.1621	0.0805	0.0219
1623	0.1271	0.0991	0.1002	0.0877	-0.0713	0.1052	0.0821	0.0261
1661	0.0466	0.0202	-0.0145	-0.0665	-0.2218	0.0285	0.1143	0.0352

a"	S1/S2	T1/T2	T2/T3	T3/T4
90	0.0177	0.0038	0.0000	0.0016
476	0.0221	0.0354	0.0000	0.0100
627*	0.0447	0.0191	0.0000	0.0338

Table S6. Intrastate coupling values $\kappa^{(n)}$ (in eV) associated with each excited state *n*, and interstate coupling values $\lambda^{(n,m)}$ (in eV) between same symmetry states (top) and different symmetry states (bottom), determined for the selected a' and a'' normal modes of Re(CO)₃(phen)(py)⁺ conformer B, respectively. The frequencies ω (in cm⁻¹) are indicated.

							/	— · /— ·
a'	S1	S2	T1	Т2	Т3	Τ4	T2/T3	T1/T4
92	-0.0254	0.0311	0.0254	-0.0076	-0.0016	-0.0059	0.0108	0.0000
201	-0.0231	-0.0301	-0.0239	-0.0224	-0.0209	-0.0052	0.0000	0.0187
433	-0.0175	-0.0044	-0.0018	0.0015	0.0298	-0.0218	0.0224	0.0000
499	-0.0921	-0.0777	-0.0559	-0.0540	-0.0492	-0.0959	0.0360	0.0000
548	0.0010	0.0190	-0.0253	-0.0037	-0.0078	-0.0021	0.0000	0.0205
630	0.0425	-0.0517	-0.0365	0.0153	0.0054	0.0326	0.0141	0.0000
1165	-0.0589	-0.0455	-0.0386	-0.0112	0.0324	-0.0515	0.0098	0.0000
1333	-0.1081	-0.1025	-0.1474	-0.1173	-0.1400	-0.1114	0.0249	0.0239
1444	-0.0696	-0.0771	-0.1015	-0.1125	-0.1434	-0.0625	0.0184	0.0000
1553	-0.1861	-0.1461	-0.1695	-0.1107	-0.0084	-0.1679	0.0513	0.0000
1623	0.1299	0.1104	0.0954	0.0660	-0.0282	0.1079	0.0512	0.0373
1662	-0.0472	-0.0228	0.0521	0.0682	0.1596	-0.0326	0.0102	0.0344

a"	S1/S2	T1/T2	T1/T3	T3/T4
93	0.0136	0.0068	0.0000	0.0209
474	0.0205	0.0301	0.0821	0.0075
627*	0.0296	0.0000	0.0000	0.0429