Supporting Information: BAR-based Optimum Adaptive Sampling Regime for Variance Minimization in Alchemical Transformation: The Nonequilibrium Stratification

Xiaohui Wang¹, Xingzhao Tu³, John Z.H.Zhang¹,4,5*, and Zhaoxi Sun¹,2*

¹State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
²Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany
³Institute of Organic Chemistry, University of Leipzig, Leipzig 04103, Germany
⁴NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
⁵Department of Chemistry, New York University, NY, NY 10003, USA

*To whom correspondence should be addressed: john.zhang@nyu.edu, proszx@163.com
Figure S1. Structures of molecules simulated in this work. (Red O atom, grey C, white H, green Cl, blue N atom.)
a) SAMPL4-1

![Image of SAMPL4-1](image1.png)

b) SAMPL4-10

![Image of SAMPL4-10](image2.png)

c) SAMPL4-20

![Image of SAMPL4-20](image3.png)

d) model compound for ASP to ASH transformation

![Image of model compound](image4.png)
Figure S2. Dependence of a) simulation time, b) number of works, c) TDV in each state on the order of magnitude of GOCE criteria, the number of iteration for the ASP example from different viewpoints.
<table>
<thead>
<tr>
<th>Absolute % error</th>
<th>LTL</th>
<th>GOCE</th>
<th>NCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIP3P</td>
<td>2.06%</td>
<td>2.27%</td>
<td>4.04%</td>
</tr>
<tr>
<td>SAMPL4-1</td>
<td>0.00%</td>
<td>1.03%</td>
<td>0.79%</td>
</tr>
<tr>
<td>SAMPL4-10</td>
<td>6.45%</td>
<td>6.32%</td>
<td>4.86%</td>
</tr>
<tr>
<td>SAMPL4-20</td>
<td>3.57%</td>
<td>4.68%</td>
<td>10.48%</td>
</tr>
<tr>
<td>Aspartate</td>
<td>0.00%</td>
<td>0.34%</td>
<td>0.49%</td>
</tr>
</tbody>
</table>