DFT insight into the oxygen vacancies formation and CH₄ activation over CeO₂ surfaces modified by transition metals (Fe, Co and Ni)

Dong Tian^{a,b}, Kongzhai Li^{a,b,*}, Yonggang Wei^{a,b}, Xing Zhu^{a,b}, Chunhua Zeng^{a,c,d,*}, Xianming Cheng^b, Yane Zheng^a, Hua Wang^{a,b,*}

 ^aState Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
^bFaculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
^cInstitute of Physical and Engineering Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
^dFaculty of Science, Kunming University of Science, Kunming 650093, Yunnan, China

Abstract

The effects of transition metals (Fe, Co and Ni) modification (viz., adsorption, insertion and substitution) of the CeO₂ surfaces on the oxygen vacancy formation and CH₄ activation are studied on the basis of firstprinciples calculations. The results indicate that the hollow, O-O-bridge and Ce-O-bridge sites are the most stable sites for Fe, Co and Ni atoms adsorption on CeO₂ (111) surface, and the double O-bridge, O-top and double O-bridge sites are the corresponding most favorable sites for the CeO₂ (110) surface. Most of the configurations that generated by the transition metals modification of the CeO_2 (111) and (110) surfaces are accompanied by the reduction of Ce^{4+} to Ce^{3+} . Based on calculated the subsurface (SS) and sublayer (SL) oxygen vacancies of the CeO₂ (111) surface, the results show that the substitution of transition metals in CeO₂ (111) surface can promote the SS oxygen vacancy formation spontaneously. Whereas, for the SL oxygen vacancy, the transition metal Fe and Ni atoms most stable adsorption on CeO_2 (111) surface can promote it formation spontaneously. For the CeO_2 (110) surface, the substitution of transition metals can facilitate the type of plain (P) and spilt (S) oxygen vacancies formation spontaneously. With respect to the CH₄ activation, the results show that the Co atom substitution in CeO₂ (110) surface can greatly facilitate the first C-H bond activation, and the energy barrier is 0.783 eV, the ΔH is -1.458 eV. However, the Co atom substitution in CeO₂ (110) surface with the type of P and S oxygen vacancies is not conducive to the C-H activation. The obtained results could provide new insights into the structural features of transition metals modified CeO_2 at the atomistic level, leading to design more efficient oxygen carriers and to optimize the activation pathways of methane over such catalysts.

Keywords: DFT; Transition Metals (Fe, Co and Ni); C-H bond; Oxygen vacancy formation; Methane activation

Electronic Supplementary Information (ESI)

S1 The Mulliken charge and PDOS of the transition metals modification of CeO₂ (111) surface

S1.1 The Mulliken charge of the transition metals modification of CeO₂ (111) surface

^{*}Corresponding authors

Email addresses: kongzhai.li@aliyun.com, kongzhai.li@foxmail.com (KongzhaiLi), chzeng83@kmust.edu.cn (Chunhua Zeng), wanghua65@163.com (Hua Wang)

Table. S 1

Calculated the Mulliken charge of transition metal (Fe, Co, or Ni), O and the Ce atoms in the transition metals (Fe, Co, or Ni) stable adsorption on CeO₂ (111) $p(2 \times \sqrt{3})$ surface, respectively. The O and Ce atoms are bond to the transition metal (Fe, Co, or Ni) atoms. The Ce and O atoms are labeled with the number n (1-4) and n (1-5), which are cited in the text as Ce₁-Ce₄ and O₁-O₅ [see Fig. S1 (a)]. Magnetic spin moments of reduced Ce and oxidized M ions are μ_{Ce} , μ_M .

Adsorption	Location	М	O ₁	O ₂	O ₃	O_4	O ₅	Ce ₂	Ce ₄	ΔQ_O	ΔQ_{Ce}	ΔQ_{total}	Valance	μ_{Ce}	μ_M
Metals		(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	Μ		
pure (111)			-0.885	-0.885	-0.885	-0.885	-0.947	1.725	1.725						
	Ce-O-bridge	0.370			-0.865			1.850		0.02	0.125	0.515	Fe ³⁺	3×0.960	3.980
	Ce-top	0.318							1.789		0.064	0.382	Fe ²⁺	0.895, 0.870	3.330
	hollow	0.366	-0.866	-0.863	-0.863					0.063		0.430	Fe ³⁺	0.893, 0.895, 0.932	4.014
Fe	O-O-bridge	0.284	-0.877			-0.876				0.017		0.301	Fe ²⁺	2×0.864	3.500
	O-top	0.115			-0.852					0.033		0.148	Fe ⁰⁺	0.160, 0.190	0.115
	O_d	0.321					-0.921			0.026		0.347	Fe ²⁺	0.880, 0.910	3.210
	Ce-O-bridge	0.144			-0.855			1.857		0.030	0.132	0.306	Co ²⁺	2×0.864	2.490
	Ce-top	0.263							1.838		0.113	0.376	Co ²⁺	0.798, 0.834	2.520
	hollow	0.349	-0.860	-0.858	-0.858					0.079		0.428	Co ³⁺	3×0.863	2.530
Co	O-O-bridge	0.348	-0.856			-0.856				0.058		0.406	Co ³⁺	0.891, 0.911, 0.904	2.610
	O-top	0.130			-0.849					0.036		0.166	Co ⁰⁺	1.823	2.023
	O_d	0.349					-0.913			0.034		0.383	Co ³⁺	0.861, 0.832, 0.795	-2.457
	Ce-O-bridge	0.156			-0.853			1.838		0.032	0.113	0.301	Ni ¹⁺	0.794	0.000
	Ce-top	0.118							1.975		0.250	0.368	Ni ²⁺	0.954, 0.976	0.957
	hollow	0.312	-0.860	-0.852	-0.852					0.091		0.403	Ni ²⁺	0.780, 0.892	-1.083
Ni	O-O-bridge	0.117	-0.862			-0.861				0.047		0.164	Ni ¹⁺	1.719	0.956
	O-top	0.049			-0.862					0.063		0.072	Ni ⁰⁺	1.706	-0.000
	O_d	0.326					-0.885			0.062		0.388	Ni ²⁺	0.910, 0.893	1.082

Table. S 2

Calculated the Mulliken charge of transition metal (Fe, Co, or Ni), O and the Ce atoms in the transition metals (Fe, Co, or Ni) stable insertion, and substitution on CeO₂ (111) $p(2 \times \sqrt{3})$ surface, respectively. The O and Ce atoms are adjacent (bond) to the transition metal (Fe, Co, or Ni) atoms. The Ce and O atoms are labeled with the number n (1-4) and n (1-7), which are cited in the text as Ce₁-Ce₄ and O₁-O₇ [see Fig. S1 (c,d)]. Magnetic spin moments of reduced Ce and oxidized M ions are μ_{Ce} , μ_M .

Adsorption	pure (111)		Fe		Со		Ni	
Location	insertion	substitution	insertion	substitution	insertion	substitution	insertion	substitution
М			0.807	0.873	0.470	0.527	0.595	0.770
O1	-0.885	-0.885	-0.734	-0.828	-0.838	-0.747	-0.831	-0.758
O_2	-0.947	-0.885	-0.783	-0.798	-0.882	-0.771	-0.875	-0.854
O_3	-0.963	-0.885	-0.814	-0.798	-0.880	-0.771	-0.875	-0.785
O_4	-0.947	-0.947	-0.775	-0.879	-0.831	-0.907	-0.870	-0.896
05	-0.885	-0.947	-0.804	-0.859	-0.904	-0.870	-0.912	-0.832
O_6		-0.963		-0.812		-0.866		-0.891
0 ₇		-0.947		-0.879		-0.807		-0.863
Ce ₁	1.725	1.725	1.527	1.154	1.630	1.243	1.730	1.271
Ce ₂	1.725	1.725	1.477	1.542	1.667	1.570	1.660	1.591
Ce ₃	1.725	1.725	1.146	1.254	1.543	1.135	1.643	1.234
Ce_4	1.725		1.458		1.515		1.485	
ΔQ_O			0.717	0.609	0.292	0.720	0.264	0.580
ΔQ_{Ce}			-1.292	-1.225	-0.545	-1.227	-0.379	-1.079
ΔQ_{total}			0.232	0.257	0.217	0.020	0.480	0.271
Valance			Fe ²⁺	Fe ²⁺	Co ²⁺	Co^{0+}	Ni ²⁺	Ni ¹⁺
μ_{Ce}			0.798, 0.896	2×0.804	0.792, 0.850	1.515	0.981, 0.834	0.851
μ_M			3.750	3.840	2.350	-0.850	0.594	0.770

Fig. S 1: (a) CeO₂ (110) p(2×2) surface is modeled by 6-layers; (b) CeO₂ (110) p(2× $\sqrt{3}$) surface is modeled by 6-layers. The purple balls respect to the top oxygen atoms, white balls respect to the cerium atom, and red balls respect to the sublayers oxygen atoms, respectively. Region enclosed by dashed line with blue in (a) and (b) represent the fixed layer. The Ce and O atoms are labeled with the number n (1-5) and n (1-8), which are cited in the text as Ce₁-Ce₅ and O₁-O₈, respectively.

From Tables S1 and S2, we we can obviously see that most of the magnetic spin moments of μ_{Ce} are ranging from 0.780 to 0.981 μ_B , excepted that when the the transition metal (Fe, Co, or Ni) adsorbs at O-top site, Ni atom adsorption at O-O-bridge on CeO₂ (111) surface, and Co substitution in CeO₂ (111) surface, after the transition metal (Fe, Co, or Ni) modification of CeO₂ (111) p(2 × $\sqrt{3}$) surface. The magnetic spin moments of μ_{Ce} in all stable modification configurations involved the reduction of Ce ions are close to the ideal magnetic spin moment of Ce³⁺ (1 μ_B) [1, 2]. This demonstrate, after the transition metal (Fe, Co, or Ni) modification of CeO₂ (111) surface, that the adjacent Ce ions (within the relative to the modification of transition metal (Fe, Co, or Ni) ion), is observed with Ce⁴⁺ reduced to Ce³⁺ once again. Our calculated the magnetic spin moments of Co²⁺ are ranging from 2.350 to 2.610 for the Co atom modification of CeO₂ (111) surface, this values are consistent with Hu et al. calculated ($\mu_{Co^{2+}}=2.53\mu_B$, Ref. [3]).

Fig. S 2: The optimized configurations of Fe adsorb on the CeO₂ (111): (a) Ce-O-bridge, (b) Ce-top, (c) hollow, (d) O-O-bridge, (e) O-top, (f) O_d, (g) Fe insertion and (h) Fe substitution sites, respectively; The optimized configurations of Co adsorb on the CeO₂ (111): (i) Ce-O-bridge, (j) Ce-top, (k) hollow, (l) O-O-bridge, (m) O-top, (n) O_d, (o) Co insertion and (p) Co substitution sites, respectively; The optimized configurations of Ni adsorb on the CeO₂ (111): (q) Ce-O-bridge, (r) Ce-top, (s) hollow, (t) O-O-bridge, (u) O-top, (v) O_d, (w) Ni insertion and (x) Ni substitution sites, respectively; Gray, red and other color spheres represent Ce, O and Fe (or Co, Ni) atoms, respectively.

Fig. S 3: (a) Partial density of states (PDOS) of pure CeO₂ (111), Fe adsorbed on hollow site, Fe inserted into CeO₂ (111), and Fe substituted in CeO₂ (111), respectively; (b) Partial density of states (PDOS) of a single Fe atom, a single Fe atom adsorbed at hollow site, an inserted Fe atom into CeO₂ (111), and a substituted Fe atom in CeO₂ (111), respectively; (c) Partial density of states (PDOS) of pure CeO₂ (111), Co adsorbed on O-O-bridge site, Co inserted into CeO₂ (111), and Co substituted in CeO₂ (111), respectively; (d) Partial density of states (PDOS) of a single Co atom, a single Co atom adsorbed at O-O-bridge site, an inserted Co atom into CeO₂ (111), and a substituted Co atom in CeO₂ (111), respectively; (e) Partial density of states (PDOS) of pure CeO₂ (111), Ni adsorb on Ce-O-bridge site, Ni inserted into CeO₂ (111), and Ni substituted in CeO₂ (111), respectively; (f) Partial density of states (PDOS) of a single Ni atom, a single Ni atom adsorbed at Ce-O-bridge site, an inserted Ni atom into CeO₂ (111), and a substituted Ni atom in CeO₂ (111), respectively.

S1.2 The PDOS of the transition metals modification of CeO₂ (111) surface

Aiming at further illustrating the interaction between the transition metals and CeO₂ (111) surface, the partial density of states (PDOS) are calculated. As shown, most of them displays new features between the valance band and conduction band (see the Fig. S3 (a, c, e)) for the most stable modification (adsorption, insertion, or substitution), and other favorable adsorption types are shown in Fig. S4 (a-c). We take the most stable modified configuration (see Fig. S3 (a-f) for an instance and analyze the corresponding PDOS of the transition metals, pure CeO_2 (111) and transition metals modification of CeO_2 (111), respectively. For the Fe atom modification, in Fig. S3 (a and b), the occupied spin up and down states are the Fe-4s state, the occupied spin-up and unoccupied spin-down states that just crossing and splitting the fermi energy corresponds to the Fe-3d state, and the unoccupied spin up and down states are the Fe-3p state, respectively. The highest occupied valence band in Fig. S3 (a) results from O-2p and some contribution from the Ce-4f for pure CeO_2 (111), suggesting Ce-4f/O-2p hybridization [4]. We can obviously see that, compared with the PDOS of the isolated Fe atom in Fig. S3 (b), the adsorption of Fe atom at hollow site on CeO₂ (111) causes the occupied Fe-4s state becoming partially unoccupied, whereas the unoccupied Fe-3p states become partially occupied, and the part of unoccupied Fe-3d state region become larger. This indicates that the electrons on Fe-4s² and Fe-3d⁶ have been fully and partly transferred, respectively. Simultaneously, there is a new occupied peak corresponding to the Ce-4f states for the Fe/CeO₂ (111) system (see the Fig. S3 (a)), resulted from the charge transferred from the Fe-4s² and Fe-3d⁶ to the CeO₂ (111) surface, and localized on the Ce-4f states, which leads to three surface Ce atoms are reduced, i.e. $Ce^{4+} \rightarrow Ce^{3+}$. This result is in good agreement with the observation by Nolan [5]. The similar phenomenon has been demonstrated for Fe insertion (and substitution) (see the Fig. S3 (a and b)) and other stable adsorption types (see Fig. S4 (a)) in CeO₂ (111) surface. This is indeed consistent with the former Mulliken charge analysis.

For the Co atom modification, in Fig. S3 (c and d), the occupied spin up and unoccupied spin down states are the Co-4s state, the occupied spin-up and unoccupied spin-down states that just crossing and splitting at the fermi energy corresponds to the Co-3d state, and the unoccupied spin up and down states are the Co-3p state, respectively. We can obviously see that the adsorption of Co atom at O-O-bridge site on CeO₂ (111) causes the unoccupied Co-4s almost disappeared, whereas the unoccupied Co-3p states become partially occupied, and the part of unoccupied Co-3d state region become larger, compared with the PDOS of the isolated Co atom in Fig. S3 (d). This indicates that the electrons on Co-4s² and Co-3d⁷ have been fully and partly transferred, respectively. Concurrently, there is a new occupied peak across the fermi energy, corresponding to the Ce-4f states for the Co/CeO₂ (111) system (see the Fig. S3 (c)), result from the charge transferred from the Co-4s² and Co-3d⁷ to the CeO₂ (111) and localized on the Ce-4f states, leading to three $Ce^{4+} \rightarrow Ce^{3+}$ on the surface. The similar phenomenon has been demonstrated for Co insertion (see the Fig. S3 (c,d)) and other stable adsorption types (see Fig. S4 (b)) in CeO₂ (111) surface. It is also in the line with the calculated Mulliken charge result. With respect to the Ni modification, in Fig. S3 (e and f), the unoccupied spin down and occupied spin up states that across fermi energy, are the Ni-4s state, the occupied spin-up and unoccupied spin-down states that just crossing and splitting at the fermi energy corresponds to the Ni-3d state, and the unoccupied spin up and down states are the Ni-3p state, respectively. We are able to tell that the adsorption of Ni atom at Ce-O-bridge site on CeO₂ (111) causes the unoccupied Ni-4s almost disappeared, whereas the unoccupied Ni-3p states become partially occupied, compared with the PDOS of the isolated Ni atom in Fig. S3 (f). This indicates that the electrons on Ni-4s² has been transferred to the $CeO_2(111)$ and localized on the Ce-4f states, with the result of one surface Ce atom is reduced. The similar phenomenon has been demonstrated for Ni insertion (and substitution) (see the Fig. S3 (e and f)) and other stable adsorption types (see Fig. S4 (c), except for Ni adsorption on O-top site) in CeO₂ (111) surface. This is also in good agreement with the former Mulliken charge analysis.

Fig. S 4: (a) Partial density of states (PDOS) of Fe adsorb on Ce-O-bridge site at CeO₂ (111), Fe adsorb on Ce-top site at CeO₂ (111), Fe adsorb on O-O-bridge site at CeO₂ (111), Fe adsorb on O-O-bridge site at CeO₂ (111), respectively; (b) Partial density of states (PDOS) of Co adsorb on Ce-O-bridge site at CeO₂ (111), Co adsorb on Ce-top site at CeO₂ (111), Co adsorb on hollow site at CeO₂ (111), Co adsorb on O-top site at CeO₂ (111), and Co adsorb on O_d site at CeO₂ (111), respectively; (c) Partial density of states (PDOS) of Ni adsorb on Ce-top site at CeO₂ (111), Ni adsorb on hollow site at CeO₂ (111), Ni adsorb on Ce-top site at CeO₂ (111), Ni adsorb on O-O-bridge site at CeO₂ (111), Ni adsorb on O-O-bridge site at CeO₂ (111), Ni adsorb on O-O-bridge site at CeO₂ (111), respectively; (d) Partial density of states (PDOS) of Fe adsorb on Ce-Ce-bridge site at CeO₂ (110), Fe adsorb on Ce-top site at CeO₂ (110), Fe adsorb on O-O-bridge site at CeO₂ (110), and Fe adsorb on O-top site at CeO₂ (110), respectively; (e) Partial density of states (PDOS) of Co adsorb on O-top site at CeO₂ (110), Co adsorb on Ce-top site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Co adsorb on O-top site at CeO₂ (110), Co adsorb on Ce-top site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Co adsorb on Ce-Ce-bridge site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Ni adsorb on O-O-bridge site at CeO₂ (110), co adsorb on Ce-top site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Ni adsorb on Ce-Ce-bridge site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Ni adsorb on Ce-Ce-bridge site at CeO₂ (110), respectively; (f) Partial density of states (PDOS) of Ni adsorb on Ce-Ce-bridge site at CeO₂ (110), co adsorb on Ce-top site at CeO₂ (110), co adsorb on O-O-bridge site at CeO₂ (110), and Co adsorb on Ce-top site at CeO₂ (110), respectively; (f) Partial density

S2 The Mulliken charge and PDOS of the transition metals modification of stoichiometric CeO₂ (110) surface

S2.1 The Mulliken charge of the transition metals modification of CeO_2 (110) surface

Table. S 3

Calculated the Mulliken charge of transition metal (Fe, Co, or Ni), O and the Ce atoms in the transition metals (Fe, Co, or Ni) stable adsorption on CeO₂ (110) $p(2 \times 2)$ surface, respectively. The O and Ce atoms are bond to the transition metal (Fe, Co, or Ni) atoms. The Ce and O atoms are labeled with the number n (1-4) and n (1-8), which are cited in the text as Ce₁-Ce₄ and O₁-O₈ [see Fig. S1 (b)]. Magnetic spin moments of reduced Ce and oxidized M ions are μ_{Ce} , μ_M .

Adsorption	Location	М	O1	O ₂	03	O_4	O ₅	0 ₆	O ₇	O ₈	Ce ₁	Ce ₂	Ce ₃	Ce_4	ΔQ_{0}	ΔQ_{Ce}	ΔQ_{total}	Valance	μ_{Ce}	μ_M
Metals		(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	М		
pure (110)		-0.849	-0.849	-0.849	-0.849	-0.849	-0.849	-0.849	-0.849	-0.849	1.538	1.538	1.538	1.538						
	Ce-Ce-bridge	0.052											1.670	1.670		0.264	0.316	Fe ²⁺	0.873, 0.895	3.470
	Ce-top	0.080										1.588				0.050	0.130	Fe ⁰⁺	0.630	-3.152
Fe	double O-bridge	0.098			-0.801	-0.798			-0.807	-0.802					0.188		0.286	Fe ²⁺	0.974, 0.836	2.067
	O-O-bridge	0.233				-0.799			-0.802						0.097		0.330	Fe ²⁺	2×0.885	2.076
	O-top	0.457		-0.832											0.017		0.474	Fe ³⁺	2×0.947	3.980
	Ce-Ce-bridge	-0.064											1.767	1.667		0.358	0.294	Co ²⁺	1.150, 0.970	2.480
	Ce-top	0.181										1.692				0.112	0.293	Co ²⁺	1.032, 0.997	2.563
Co	double O-bridge	0.114			-0.791	-0.789			-0.789	-0.790					0.237		0.357	Co ²⁺	1.008, 0.873	2.346
	O-O-bridge	0.215				-0.789			-0.790						0.119		0.334	Co ²⁺	0.978, 0.936	-1.064
	O-top	0.162		-0.754											0.095		0.257	Co ²⁺	0.869, 0.785	2.134
	Ce-Ce-bridge	0.003											1.761	1.761		0.446	0.449	Ni ²⁺	0.846, 0.792	1.580
	Ce-top	0.105										1.583				0.045	0.150	Ni ⁰⁺	1.683	0.333
Ni	double O-bridge	0.268			-0.772	-0.770			-0.769	-0.769					0.316		0.584	Ni ²⁺	1.003, 0.989	1.964
	O-O-bridge	0.072				-0.801			-0.803						0.094		0.166	Ni ⁰⁺	1.457	0.367
	O-top	0.167		-0.771											0.078		0.245	Ni ¹⁺	1.116	0.72

Table. S 4

Calculated the Mulliken charge of transition metal (Fe, Co, or Ni), O and the Ce atoms in the transition metals (Fe, Co, or Ni) stable insertion, and substitution on CeO₂ (110) $p(2 \times 2)$ surface, respectively. The O and Ce atoms are adjacent (bond) to the transition metal (Fe, Co, or Ni) atoms. The Ce and O atoms are labeled with the number n (1-5) and n (1-6), which are cited in the text as Ce₁-Ce₅ and O₁-O₆ [see Fig. S1 (e,f)]. Magnetic spin moments of reduced Ce and oxidized M ions are μ_{Ce} , μ_M .

Adsorption	pure (110)		Fe		Со		Ni	
Location	insertion	substitution	insertion	substitution	insertion	substitution	insertion	substitution
Μ			0.645	0.680	0.650	0.641	0.622	0.602
O_1	-0.849	-0.849	-0.834	-0.829	-0.793	-0.812	-0.805	-0.832
O_2	-0.952	-0.849	-0.938	-0.829	-0.933	-0.812	-0.897	-0.828
O_3	-0.952	-0.849	-0.946	-0.829	-0.912	-0.812	-0.897	-0.828
O_4	-0.849	-0.849	-0.837	-0.829	-0.819	-0.812	-0.826	-0.832
O ₅		-0.966		-0.946		-0.936		-0.926
O_6		-0.966		-0.946		-0.936		-0.926
Ce ₁	1.538	1.538	1.531	1.422	1.523	1.439	1.533	1.456
Ce ₂	1.994	1.994	2.033	1.785	1.871	1.778	1.758	1.866
Ce ₃	2.100	1.994	1.986	1.856	1.998	1.832	2.863	1.866
Ce_4	1.994	1.994	1.886	1.832	1.756	1.737	1.732	1.866
Ce ₅		1.994		1.873		1.796		1.866
ΔQ_O			0.047	0.120	0.145	0.208	0.177	0.160
ΔQ_{Ce}			-0.190	-0.746	-0.510	-0.832	-0.690	-0.482
ΔQ_{total}			0.502	0.054	0.285	0.017	0.109	0.280
Valance			Fe ³⁺	Fe ⁰⁺	Co ²⁺	Co^{0+}	Ni ⁰⁺	Ni ¹⁺
μ_{Ce}			0.961, 0.823, 0.764	1.442	2×0.935	1.540	1.531	0.975
μ_M			3.445	0.680	2.463	0.641	0.622	1.997

From Tables S3 and S4, we we can obviously see that most of the magnetic spin moments of μ_{Ce} are ranging from 0.764 to 1.150 μ_B , excepted that when the the Fe adsorbs at Ce-top site, Ni atom adsorption at Ce-top and O-O-bridge sites on CeO₂ (110) surface, Fe, Co atom substitution in CeO₂ (110) surface and Ni insertion into CeO₂ (110) p(2 × 2) surface, after the transition metal (Fe, Co, or Ni) modification of CeO₂ (110) surface. The magnetic spin moments of μ_{Ce} in all stable modification configurations involved the reduction of Ce ions are close to the ideal magnetic spin moment of Ce³⁺ (1 μ_B) [1, 2]. This demonstrate, after the transition metal (Fe, Co, or Ni) modification Ce ions (within the relative to the modification of transition metal (Fe, Co, or Ni) ion), is observed with Ce⁴⁺ reduced to Ce³⁺ once again. Our calculated the magnetic spin moments of Co²⁺ are ranging from 2.346 to 2.563 for the Co atom modification of CeO₂ (110) surface, this values are consistent with Hu et al. calculated ($\mu_{Co^{2+}}=2.53\mu_B$, Ref. [3]).

Fig. S 5: The optimized configurations of Fe adsorb on the CeO₂ (110): (a) Ce-Ce-bridge, (b) Ce-top, (c) double O-bridge, (d) O-O-bridge, (e) O-top, (f) Fe insertion and (g) Fe substitution sites, respectively; The optimized configurations of Co adsorb on the CeO₂ (110): (h) Ce-Ce-bridge, (i) Ce-top, (j) double O-bridge, (k) O-O-bridge, (l) O-top, (m) Co insertion and (n) Co substitution sites, respectively; The optimized configurations of Ni adsorb on the CeO₂ (110): (o) Ce-Ce-bridge, (p) Ce-top, (q) double O-bridge, (r) O-O-bridge, (s) O-top, (t) Ni insertion and (u) Ni substitution sites, respectively. Gray, red and other color spheres represent Ce, O and Fe (or Co, Ni) atoms, respectively.

Fig. S 6: (a) Partial density of states (PDOS) of pure CeO₂ (110), Fe adsorbed on double O-bridge site, Fe inserted into CeO₂ (110), and Fe substituted in CeO₂ (110), respectively; (b) Partial density of states (PDOS) of a single Fe atom, a single Fe atom adsorbed at double O-bridge site, an inserted Fe atom into CeO₂ (110), and a substituted Fe atom in CeO₂ (110), respectively; (c) Partial density of states (PDOS) of pure CeO₂ (110), Co adsorbed on O-top site, Co inserted into CeO₂ (110), and Co substituted in CeO₂ (110), respectively; (d) Partial density of states (PDOS) of a single Co atom, a single Co atom adsorbed at O-top site, an inserted Co atom into CeO₂ (110), and a substituted Co atom in CeO₂ (110), respectively; (e) Partial density of states (PDOS) of pure CeO₂ (110), nod a substituted Co atom in CeO₂ (110), respectively; (f) Partial density of states (PDOS) of a single Ni inserted in CeO₂ (110), and Ni substituted in CeO₂ (110), respectively; (f) Partial density of states (PDOS) of a single Ni atom, a single Ni atom adsorbed at double O-bridge site, an inserted Ni atom into CeO₂ (110), and a substituted Ni atom in CeO₂ (110), respectively.

Fig. S 7: The reduced CeO_2 (110) surfaces, (a) The plane O vacancy (P), and (b) The split O vacancy (S), respectively. The reduced CeO_2 (111) surfaces, (c) The subsurface O vacancy (SS), and (d) The sublayer O vacancy (SL), respectively

S2.2 The PDOS of the transition metals modification of CeO₂ (110) surface

Here we take the most energetically favorable stable modified configuration (see Fig. S6 (a-f)) for an instance and analyze the corresponding PDOS of the transition metal atoms, pure CeO₂ (110) surface and modified CeO₂ (110) surface, respectively. From Fig. S6 (a-b), it can be see that its 4s state upon the Fe atom adsorption (at the double O-bridge site) becomes unoccupied and a new peak emerges between unoccupied Ce-4f band bottom and O-2p valance band top, viz, the adsorbed Fe is oxidized whereas the adjacent Ce^{4+} is reduced to Ce^{3+} . The phenomenon also appears in the Fe atom insertion into the CeO_2 (110) surface (see Fig. S6 (a-b)) and other stable adsorption types (see Fig. S4 (d), apart from the above mentioned exception). Actually, one can observe two and three neighboring completely reduced Ce ion for Fe atom adsorption at the double O-bridge site and Fe atom insertion into the CeO₂ (110) surface, respectively. For the Co atom modification of CeO_2 (110) surface (see Fig. S6 (c,d)), we can obviously see that the adsorption of Co atom at O-top site on CeO₂ (110) surface causes appearing the unoccupied spin-paired gap state, viz, Co-4s state, whereas the unoccupied Co-3p states become partially occupied, compared with the PDOS of the isolated Co atom in Fig. S6 (d). This indicates that the electrons on Co-4s² has been fully transferred to the Ce-4f states, result in a new occupied peak across the fermi energy, corresponding to the Ce-4f states for the Co/CeO₂ (110) system (see Fig. S6 (c)), leading to two Ce⁴⁺ \rightarrow Ce^{3+} on the surface. The similar phenomenon has been demonstrated for the Co atom insertion (see Fig. S6 (c,d)) and other stable adsorption types (see Fig. S4 (e)) on CeO_2 (110) surface. It is also in the line with the calculated Mulliken charge result. With respect to the Ni atom modification, in Fig. S6 (e,f), it is found that the adsorption of Ni atom at double-O-bridge site on CeO₂ (110) surface causes the unoccupied Ni-4s almost disappeared, whereas the unoccupied Ni-3p states become partially occupied, compared with the PDOS of the isolated Ni atom in Fig. S6 (f). This indicates that the electrons on Ni-4s² has been transferred to the CeO₂(110) surface and localized on the Ce-4f states, with the result of two surface Ce atom is reduced. The similar phenomenon has been demonstrated for Ni substitution (see Fig. S6 (e,f)) and other stable adsorption types (see Fig. S4 (f), except for the Ni atom adsorption on Ce-top site, O-Obridge, and Ni insertion into CeO_2 (110) surface, respectively) on CeO_2 (110) surface. This is also in good agreement with the former Mulliken charge analysis.

S3 Methane adsorption on the transition metals modified CeO_2 (110) surface

Table. S 5

The adsorption energies (E_{ads} , eV), bond lengths (Å) and net charges (e) for the isolated methane (CH₄) molecular adsorbed over the CeO₂ (110) surface, the reduced CeO₂ (110) surface, transition metals (Fe, Co and Ni) modification of CeO₂ (110) surface, the reduction of transition metal (Fe, Co and Ni) modification on CeO₂ (110) surface, respectively.

			E _{ads} (eV)					Bond length			Net Charge
	Ce_a	Ce_b	Ce_c	\mathbf{O}_a	\mathbf{O}_b	Μ		(Å)			(e)
CeO ₂ (110)	0.131	0.126		0.130	0.041		1.103	1.102	1.102	1.100	0.034
E_{vac-P}	0.146	0.147	0.127	0.127	0.126		1.101	1.103	1.103	1.103	0.033
E_{vac-S}	0.128	0.121	0.127	0.124	0.113		1.100	1.101	1.102	1.103	0.034
Fe adsorption	2.069	2.046		1.943	1.876	1.632	1.101	1.103	1.103	1.103	0.034
E_{vac-P}	0.129	0.123	0.214	0.028	0.033	0.137	1.102	1.104	1.104	1.106	0.041
E_{vac-S}	-0.464	-0.484	-0.481	-0.525	-0.561	-0.516	1.101	1.103	1.103	1.102	0.036
Fe insertion	1.784	1.785		1.756	1.726		1.100	1.101	1.102	1.102	0.034
E_{vac-P}	0.109	0.113	0.112	0.034	0.114		1.100	1.102	1.104	1.100	0.033
E_{vac-S}	0.038	0.078	0.029	0.008	0.111		1.101	1.102	1.102	1.102	0.029
Fe substitution		0.154		0.134	0.069	1.618	1.103	1.104	1.102	1.101	0.017
E_{vac-P}		0.150	0.144	0.036	0.149	0.058	1.100	1.102	1.103	1.103	0.049
E_{vac-S}		0.155	0.146	0.148	0.161	0.050	1.126	1.103	1.127	1.102	0.046
Co adsorption	0.101	0.141		0.039	0.041	0.059	1.101	1.102	1.103	1.103	0.029
E_{vac-P}	0.209	0.222	0.057	0.038	-0.303	-0.212	1.100	1.101	1.101	1.104	0.034
E_{vac-S}	0.112	0.113	0.114	0.036	0.048	0.039	1.101	1.102	1.102	1.103	0.038
Co insertion	0.126	0.115		0.100	0.037		1.099	1.102	1.102	1.103	0.034
E_{vac-P}	0.126	0.106	0.062	0.025	0.045		1.100	1.102	1.102	1.102	0.036
E_{vac-S}	0.125	0.168	0.114	0.050	0.060		1.101	1.104	1.104	1.104	0.032
Co substitution		2.387		1.008	0.899	2.189	1.100	1.101	1.105	1.105	0.055
E_{vac-P}		0.873	0.872	0.759	0.795	0.802	1.100	1.102	1.101	1.102	0.046
E_{vac-S}		0.880	0.876	0.762	0.853	0.876	1.099	1.103	1.103	1.103	0.046
Ni adsorption	0.149	0.134		0.039	0.401	0.058	1.100	1.103	1.103	1.102	0.034
E_{vac-P}	0.111	0.130	0.225	0.528	0.043	0.062	1.101	1.101	1.106	1.107	0.041
E_{vac-S}	0.141	0.131	0.005	0.007	0.108	0.069	1.100	1.102	1.102	1.102	0.038
Ni insertion	1.814	1.765		1.735	1.744		1.101	1.104	1.103	1.103	0.033
E_{vac-P}	0.187	0.191	0.184	0.062	0.139		1.100	1.101	1.102	1.102	0.034
E_{vac-S}	0.111	0.114	0.113	0.134	0.108		1.113	1.103	1.104	1.103	0.024
Ni substitution		1.682		2.326	1.699	2.327	1.102	1.101	1.102	1.104	0.001
E_{vac-P}		0.138	0.135	0.136	0.136	0.076	1.099	1.102	1.103	1.103	0.045
E_{vac-S}		0.134	0.135	0.072	0.077	0.068	1.067	1.102	1.102	1.103	0.038

Fig. S 8: Total density of states (TDOS) and partial density of states (PDOS) of (a_1) Free CH₄, (a_2) pure CeO₂(110), (a_3) the configuration in Fig.S9 (a) and (a_4) CH₄ in Fig.S9 (a); Total density of states (TDOS) and partial density of states (PDOS) of (b_1) Free CH₄, (b_2) pure CeO₂(110) with the type of P oxygen vacancy, (b_3) the configuration in Fig.S9 (b) and (b_4) CH₄ in Fig.S9 (b); Total density of states (TDOS) and partial density of states (PDOS) of (c_1) Free CH₄, (c_2) pure CeO₂(110) with the type of S oxygen vacancy, (c_3) the configuration in Fig.S9 (c) and (c_4) CH₄ in Fig.S9 (c); Total density of states (TDOS) and partial density of states (PDOS) of (d_1) Free CH₄, (d_2) Co substitution in CeO₂(110), (d_3) the configuration in Fig.S10 (d) and (d_4) CH₄ in Fig.S10 (d); Total density of states (TDOS) and partial density of states (PDOS) of (e_1) Free CH₄, (e_2) Co substitution in CeO₂(110) with the type of P oxygen vacancy, (e_3) the configuration in Fig.S10 (e) and (e_4) CH₄ in Fig.S10 (e); Total density of states (PDOS) of (f_1) Free CH₄, (f_2) Co substitution in CeO₂(110) with the type of P oxygen vacancy, (e_3) the configuration in Fig.S10 (e) and (e_4) CH₄ in Fig.S10 (e); Total density of states (PDOS) of (f_1) Free CH₄, (f_2) Co substitution in CeO₂(110) with the type of S oxygen vacancy, (e_3) the configuration in Fig.S10 (e) and (e_4) CH₄ in Fig.S10 (e); Total density of states (PDOS) of (f_1) Free CH₄, (f_2) Co substitution in CeO₂(110) with the type of S oxygen vacancy, (e_3) the configuration in Fig.S10 (e) and (e_4) CH₄ in Fig.S10 (e); Total density of states (PDOS) of (f_1) Free CH₄, (f_2) Co substitution in CeO₂(110) with the type of S oxygen vacancy, (f_3) the configuration in Fig.S10 (f).

Here, we consider the most energetically favorable sites for the clean CeO_2 (110) surface and transition metal modification of CeO₂ (110) surfaces without (or with) formation of P or S oxygen vacancies. The corresponding sites are Ce_a (see Fig. S9 (a)), Ce_b (see Fig. S9 (b)), Ce_a (see Fig. S9 (c)), Ce_b (see Fig. S10 (d)], Ce_b (see Fig. S10 (e)) and Ce_b (see Fig. S10 (f)), respectively. See the TDOS and PDOS (see Fig. S8), CH₄ in the mode of Fig. S9(a) (the TDOS and PDOS are shown in the lift of the first row in Fig. S8), CH₄ in the mode of Fig. S9(b) (the TDOS and PDOS are shown in the middle of the first row in Fig. S8), CH₄ in the mode of Fig. S9(c) (the TDOS and PDOS are shown in the right of the first row in Fig. S8) for the clean CeO_2 (110) surface, the reduction of CeO_2 (110) surface with the type of P or S surface oxygen vacancy catalyst, respectively. Compared to the free CH₄ molecule, the results show that the position of TDOS shifts toward lower energy level. Because of the oxygen vacancy formation is a surface reduction process [6]. It is interesting to note that there is a new occupied peak appeared in the TDOS of pure CeO_2 (110) with the presence of P or S surface oxygen vacancy. The new occupied peak is corresponding to the Ce³⁺. See the TDOS and PDOS of the Co atom substitution in CeO_2 (110) surface without (or with) the presence of P or S surface oxygen vacancy catalyst (see the left of the second row, the middle of the second row and the right of the second row in Fig. S8, respectively), the above mentioned phenomenon is also observed. It is noted that the degree of the position of TDOS toward lower energy level are difference between the CH₄ molecule adsorption on the CeO₂ (110) surface (the reduction of CeO₂ (110) with the presence of P or S surface oxygen vacancies are also included) and the Co atom substitution in CeO₂ (110) surface (the Co atom substitution in CeO_2 (110) surface with two types of oxygen vacancies are also included).

Fig. S 9: The optimized configurations of CH₄ most energetically adsorb on pure CeO₂ (110) surface, the type of P oxygen vacancy and the type of S oxygen vacancy in CeO₂ (110) surface at Ce_a, Ce_b and Ce_a site (a-c), respectively; The optimized configurations of CH₄ most energetically adsorb on Fe adsorption on CeO₂ (110) surface at double O-bridge site, the type of P oxygen vacancy and the type of S oxygen vacancy in Fe adsorption on CeO₂ (110) surface at Ce_a, Ce_c and Ce_a site (d-f), respectively; The optimized configurations of CH₄ most energetically adsorb on Fe insertion into CeO₂ (110) surface at Ce_a, O_b and O_b site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Fe insertion into CeO₂ (110) surface, the type of P oxygen vacancy and the type of S oxygen vacancy in Fe insertion into CeO₂ (110) surface at Ce_b, O_b and O_b site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Fe substitution in CeO₂ (110) surface, the type of P oxygen vacancy and the type of S oxygen vacancy in Fe substitution in CeO₂ (110) surface at Fe, Ce_b and O_b site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Co adsorption on CeO₂ (110) surface at Ce_b, Ce_b and O_b site (j-l), respectively; The optimized configurations of CH₄ most energetically adsorb on Co adsorption on CeO₂ (110) surface at Ce_b, Ce_b and Ce_c site, the type of P oxygen vacancy and the type of S oxygen vacancy in Fe substitution in CeO₂ (110) surface at Ce_b, Ce_b and Ce_c site, the type of P oxygen vacancy and the type of S oxygen vacancy in Co adsorption on CeO₂ (110) surface at Ce_b, Ce_b and Ce_c site (m-o), respectively.

Fig. S 10: The optimized configurations of CH₄ most energetically adsorb on Co insertion into CeO₂ (110) surface, the type of P oxygen vacancy and the type of S oxygen vacancy in Co insertion into CeO₂ (110) surface at Ce_b, Ce_a and Ce_b site (a-c), respectively; The optimized configurations of CH₄ most energetically adsorb on Co substitution in CeO₂ (110) surface, the type of P oxygen vacancy and the type of S oxygen vacancy in Co substitution in CeO₂ (110) surface at Ce_b, Ce_b and Ce_b site (d-f), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni adsorption on CeO₂ (110) surface at double O-bridge site, the type of P oxygen vacancy and the type of S oxygen vacancy in Ni adsorption on CeO₂ (110) surface at Ce_a, Ce_c and Ce_a site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni adsorption on CeO₂ (110) surface at Ce_a, Ce_c and Ce_a site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni insertion into CeO₂ (110) surface at Ce_a, Ce_c and Ce_a site (g-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni insertion into CeO₂ (110) surface at Ce_a, Ce_b and O_a site (j-i), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni substitution in CeO₂ (110) surface at Ce_a, Ce_b and O_a site (j-l), respectively; The optimized configurations of CH₄ most energetically adsorb on Ni substitution in CeO₂ (110) surface at Ni, Ce_b and Ce_a site (m-o), respectively.

Fig. S 11: The optimized configurations of CH₄ dissociative adsorption on CeO₂ (110) surface at O_a (a), O_b(k), O_c (l) sites; The optimized configurations of CH₄ dissociative adsorption on CeO₂ (110) surface with the type of P oxygen vacancy at O_a (b), O_b (c), O_c (m) sites; The optimized configurations of CH₄ dissociative adsorption on CeO₂ (110) surface with the type of S oxygen vacancy at O_a (d), O_b (e), O_c (n) sites; The optimized configurations of CH₄ dissociative adsorption at Co substitution in CeO₂ (110) surface at O_a (f), O_b(o), O_c (p) sites; The optimized configurations of CH₄ dissociative adsorption on Co substitution in CeO₂ (110) surface with the type of P oxygen vacancy at O_a (g), O_b (h), O_c (q) sites; The optimized configurations of CH₄ dissociative adsorption on Co substitution in CeO₂ (110) surface with the type of S oxygen vacancy at O_a (i), O_b (j), O_c (r) sites.

References

- [1] D. Tian, C. H. Zeng, and H. Wang, et al, Appl. Surf. Sci. 416, (2017), 547-564.
- [2] L. X. Cui, Y. H. Tang, and H. Zhang, et al, Phys. Chem. Chem. Phys. 14, (2012), 1923.
- [3] W. D. Hu, J. G. Lan, and Y. Guo, et al, ACS. Catal. 6, (2016), 5508-5519.
- [4] S. Q. Shi, X. Z. Ke, and C. Y. Ouyang, et al, J. Power. Sources. 194, (2009), 830.
- [5] M. Nolan, J. Chem. Phys. 136, (2012), 134703.
- [6] A. D. Mayernick and M. J. Janik, J. Phys. Chem. C. 112, (2008), 14955-14964.