Electronic Supplementary Information

Enhancement of Selectivity of MXenes (*M*₂C, *M*=Ti, V, Nb, Mo) via Oxygen-functionalization: Promising Materials for Gas-sensing and -separation

Anchalee Junkaew^{*a} and Raymundo Arróyave^b

^aNational Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand

^bDepartment of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA

*E-mail: anchalee@nanotec.or.th Phone: +6625647100 ext. 6661

Gas	Ti ₂ C	Ti ₂ CO ₂		V_2C	V ₂ CO ₂		Nb ₂ C		Nb ₂ CO ₂	Mo ₂ C	Mo ₂ CO ₂	
	PBE	PBE	PBE-D3	PBE	PBE	PBE-D3	PBE	PBE	PBE-D3	PBE	PBE	PBE-D3
H2	-2.09	-0.01	-0.07	-1.91	-0.01	-0.09	-1.91	-0.01	-0.06	-1.41	-0.01	-0.07
H ₂ O	-3.84	-0.04	-0.21	-0.72	-0.31	-0.45	-0.72	-0.05	-0.20	-0.73	-0.06	-0.21
H_2S	-5.90	-0.02	-0.24	-5.48	-0.31	-0.51	-5.57	-0.03	-0.24	-4.53	-0.16	-0.39
N2	-2.97	0.00	-0.13	-2.72	-0.28	-0.36	-2.19	-0.01	-0.12	-1.40	-0.01	-0.12
NH3	-0.91	-0.09	-0.37	-1.08	-0.33	-0.48	-1.07	-0.29	-0.50	-1.23	-0.20	-0.40
NO	-8.69	-0.10	-0.25	-8.10	-0.57	-0.73	-6.95	-0.07	-0.21	-3.43	-0.56	-0.80
NO ₂	-9.28	-0.01	-0.17	-11.07	-0.02	-0.18	-10.15	-0.01	-0.18	-8.93	-0.08	-0.26
CO	-2.90	0.00	-0.13	-2.76	0.00	-0.14	-2.60	-0.01	-0.12	-2.21	0.00	-0.12
$\rm CO_2$	-5.06	-0.01	-0.20	-3.85	-0.28	-0.36	-1.72	-0.02	-0.20	-1.15	-0.01	-0.21
${\rm SO}_2$	-11.09	-0.02	-0.26	-9.92	-0.03	-0.27	-10.08	-0.04	-0.29	-7.98	-0.03	-0.28
O ₂	-10.88			-9.89			-9.83			-7.94		

Table S1. Calculated E_{ad} (in eV/adsorbate) of gas adsorbed MXenes and O-MXenes

(a) Ti_2C/H_2 E_{ad} = -2.09 eV

(e) Ti_2C/H_2S $E_{ad} = -5.90 \text{ eV}$

(i) Ti_2C/NO $E_{ad} = -8.69 \text{ eV}$

(b)Ti₂C/H₂ $E_{ad} = -0.34 \text{ eV}$

(f) Ti_2C/H_2S $E_{ad} = -1.08 \text{ eV}$

(j) Ti_2C/NO $E_{ad} = -5.05 \text{ eV}$

(c) Ti_2C/H_2O $E_{ad} = -3.84 \text{ eV}$

(g) Ti_2C/N_2 E_{ad} = -2.97 eV

(k) Ti_2C/NO $E_{ad} = -3.54 \text{ eV}$

(o) Ti_2C/SO_2 E_{ad} = -11.09 eV

Fig. S1 The structures of gas adsorption on Ti₂C and E_{ad} calculated by PBE

(d) Ti_2C/H_2O $E_{ad} = -0.74 \text{ eV}$

(h) Ti_2C/NH_3 E_{ad} = -0.91 eV

(1) Ti_2C/NO_2 $E_{ad} = -9.28 \text{ eV}$

(p) Ti_2C/O_2 $E_{ad} = -10.88 \text{ eV}$

(m) Ti_2C/CO $E_{ad} = -2.90 \text{ eV}$

(n) Ti_2C/CO_2 E_{ad} = -5.06 eV

(a) V_2C/H_2 E_{ad} = -1.91 eV

(e) V_2C/H_2S $E_{ad} = -1.41 \text{ eV}$

(i) V_2C/NO $E_{ad} = -4.53 \text{ eV}$

(b) V_2C/H_2 E_{ad} = -0.67 eV

(f) V_2C/N_2 E_{ad} = -2.72 eV

(j) V_2C/NO_2 $E_{ad} = -11.07 \text{ eV}$

(c) V_2C/H_2O $E_{ad} = -0.72 \text{ eV}$

(g) V_2C/NH_3 E_{ad} = -1.08 eV

(k) V_2C/NO_2 E_{ad} = -4.08 eV

(d) V_2C/H_2S $E_{ad} = -5.48 \text{ eV}$

(h) V_2C/NO $E_{ad} = -8.10 \text{ eV}$

(1) V_2C/CO $E_{ad} = -2.76 \text{ eV}$

(m) V_2C/CO_2 E_{ad} = -3.85 eV

(n) V_2C/SO_2 E_{ad} = -9.92 eV

(o) V_2C/O_2 E_{ad} = -9.89 eV

(a) Nb_2C/H_2 $E_{ad} = -1.91 \text{ eV}$

(e) Nb_2C/N_2 E_{ad} = -2.19 eV

(i) Nb₂C/NO₂ $E_{ad} = -10.15 \text{ eV}$

(b) Nb_2C/H_2 $E_{ad} = -0.51 \text{ eV}$

(f) Nb_2C/NH_3 $E_{ad} = -1.07 \text{ eV}$

(c) Nb₂C/H₂O E_{ad} = -0.72 eV

(g) Nb₂C/NO $E_{ad} = -6.95 \text{ eV}$

(k) Nb₂C/CO $E_{ad} = -2.60 \text{ eV}$

(d) Nb₂C/H₂S E_{ad} = -5.57 eV

(h) Nb₂C/NO $E_{ad} = -4.12 \text{ eV}$

(l) Nb_2C/CO_2 $E_{ad} = -1.72 \text{ eV}$

(m) Nb₂C/SO₂ $E_{ad} = -10.08 \text{ eV}$

(j) Nb_2C/NO_2 $E_{ad} = -4.26 \text{ eV}$

Fig. S3 The structures of gas adsorption on Nb₂C and E_{ad} calculated by PBE

(a) Mo_2C/H_2 $E_{ad} = -1.41 \text{ eV}$

(e) Mo_2C/H_2S $E_{ad} = -1.34 \text{ eV}$

(i) Mo_2C/NO_2 $E_{ad} = -8.93 \text{ eV}$

(b) Mo_2C/H_2 E_{ad} = -0.78 eV

(f) Mo_2C/N_2 $E_{ad} = -1.40 \text{ eV}$

(j) Mo_2C/NO_2 $E_{ad} = -3.33 \text{ eV}$

(c) Mo_2C/H_2O $E_{ad} = -0.73 \text{ eV}$

(g) Mo_2C/NH_3 $E_{ad} = -1.23 \text{ eV}$

(k) Mo_2C/CO $E_{ad} = -2.21 \text{ eV}$

(d) Mo_2C/H_2S $E_{ad} = -4.53 \text{ eV}$

(h) $Mo_2C/NO E_{ad} = -3.43 \text{ eV}$

(1) Mo_2C/CO_2 $E_{ad} = -1.15 \text{ eV}$

(m) Mo_2C/SO_2 $E_{ad} = -7.98 \text{ eV}$

(n) Mo_2C/SO_2 $E_{ad} = -2.61 \text{ eV}$

Fig. S4 The structures of gas adsorption on Mo₂C and E_{ad} calculated by PBE

Fig. S5 The most preferable structures of gas on Ti₂CO₂ and E_{ad} calculated by PBE-D3

Fig. S6 The most preferable structures of gas on V2CO2 and Ead calculated by PBE-D3

Fig. S7 The most preferable structures of gas on Nb₂CO₂ and E_{ad} calculated by PBE-D3

Fig. S8 The most preferable structures of gas on Mo₂CO₂ and E_{ad} calculated by PBE-D3

System		PBE		PBE-D3				
-	E _{ad} (eV)	r (Å))	$E_{ad} (eV) r (\mathbf{\mathring{A}})$				
NH ₃ /Ti ₂ CO ₂	-0.09	Ti'—N	2.46	-0.37	Ti'—N	2.43		
		O^{1} - H^{1}	3.38		O^{1} - H^{1}	3.34		
		O^2 '- H^2	3.39		O^2 '- H^2	3.34		
		O^{3} '- H^{3}	3.38		O ³ '-H ³	3.35		
		Ti'-O ¹ '	1.94		Ti'-O ¹ '	1.95		
		Ti'-O ² '	1.94		Ti'-O ² '	1.95		
		Ti'-O ³ '	1.94		Ti'-O ³	1.95		
		Ti'-C ¹ '	2.38		Ti'-C ¹ '	2.36		
		Ti'-C ² '	2.38		Ti'-C ² '	2.37		
		Ti'-C ³ '	2.38		Ti'-C ³ '	2.36		
		N-H (g)	1.02		N-H	1.02		
NH ₃ /Nb ₂ CO ₂	-0.29	Nb'—N	2.41	-0.50	Nb'—N	2.41		
		O^{1} - H^{1}	2.35		O^{1} - H^{1}	2.34		
		O^2 '- H^2	2.35		O^{2} '- H^{2}	2.33		
		O ³ '-H ³	2.35		O ³ '-H ³	2.33		
		Nb'-O ¹	1.98		Nb'-O ¹	1.99		
		Nb'-O ²	1.98		Nb'-O ²	1.99		
		Nb'-O ³	1.98		Nb'-O ³	1.99		
		Nb'-C ¹ '	2.43		Nb'-C ¹ '	2.42		
		Nb'-C ² '	2.43		Nb'-C ² '	2.41		
		Nb'-C ³ '	2.43		Nb'-C ³ '	2.42		
		N-H (g)	1.02		N-H (g)	1.02		
NO/V ₂ CO ₂	-0.57	O'—N	2.31	-0.73	O'—N	2.27		
		O'-V ¹ '	1.96		O'-V ¹ '	1.96		
		O'-V ² '	2.01		O'-V ² '	2.02		
		O'-V ³ '	1.97		O'-V ³ '	1.97		
		V ¹ '-C ¹ '	1.99		V ¹ '-C ¹ '	2.00		
		V ¹ '-C ² '	2.21		V ¹ '-C ² '	2.21		
		V ² '-C ² '	1.97		V ² '-C ² '	1.97		
		$V^{2'}-C^{3'}$	1.96		$V^{2'}-C^{3'}$	1.96		
		V ³ '-C ³ '	2.19		V ³ '-C ³ '	2.18		
		$V^{3'}-C^{1'}$	1.99		V ³ '-C ¹ '	1.98		
		N-O (g)	1.15		N-O (g)	1.15		
NO/Mo ₂ CO ₂	-0.56	O'—N	2.02	-0.80	O'—N	2.11		
		O'-Mo ¹	2.09		O'-Mo ¹	2.08		
		O'-Mo ²	2.15		O'-Mo ²	2.08		
		O'-Mo ³	2.09		O'-Mo ³	2.08		
		Mo ¹ -C ¹	2.16		Mo ¹ -C ¹	2.16		
		Mo ² -C ¹	2.16		Mo^2-C^1	2.16		
		Mo ³ -C ¹	2.16		Mo ³ -C ¹	2.16		
		N-O(g)	1.14		N-O	1.14		

Table S2 E_{ad} in eV and atomic distance (r) in Å between atoms regarding Fig. S9 from PBE and PBE-D3 calculations. Prime (') represents an atom of O-MXene.

Fig. S9 Structures of (a) NH₃/Ti₂CO₂, (b) NH₃/Ti₂CO₂, (c) NO/V₂CO₂ and (d) NO/Mo₂CO₂

	Ti ₂ CO ₂			Nb ₂ CO ₂			V ₂ CO ₂			M02CO2		
Gas	ΔE_{ad}	bond	Δr (Å)	ΔE_{ad}	bond	Δr (Å)	ΔE_{ad}	bond	Δr (Å)	ΔE_{ad}	bond	Δr (Å)
	(eV)			(eV)			(eV)			(eV)		
H ₂	-0.07	О'-Н	-0.12	-0.06	О'-Н	0.00	-0.08	О'-Н	-0.21	-0.06	О'-Н	-0.03
H ₂ O	-0.17	О'-Н	-0.03	-0.15	О'-Н	0.00	-0.14	О'-Н	-0.01	-0.16	О'-Н	-0.01
H_2S	-0.22	О'-Н	-0.36	-0.21	01'-Н	-0.12	-0.19	О'-Н	-0.36	-0.23	О'-Н	-0.16
NH ₃	-0.27	O'-H*	-0.05	-0.21	O'-H*	-0.02	-0.15	O'-H*	-0.25	-0.20	O'-H*	-0.14
		(Ti'-N)**	(-0.03)		(Nb'-N)**	(-0.00)		(V'-N)**	(-0.20)			
N2	-0.12	O'-N	-0.04	-0.11	O'-N	-0.02	-0.08	O'-N	-0.27	-0.12	O'-N	-0.04
NO	-0.14	O'-N	-0.02	-0.14	O'-N	0.00	-0.15	O'-N	0.06	-0.24	O'-N	0.09
NO ₂	-0.15	O'-N	-0.04	-0.17	O'-N	0.00	-0.16	O'-N	-0.02	-0.19	O'-N	-0.02
СО	-0.12	O'-C	0.00	-0.11	O'-C	0.00	-0.14	O'-C	-0.01	-0.12	O'-C	0.00
CO ₂	-0.19	O'-C	0.00	-0.19	O'-C	0.00	-0.08	0'-0	-0.00	-0.20	0'-0	-0.01
SO ₂	-0.24	O'-S	-0.10	-0.25	O'-S	-0.12	-0.23	O'-S	-0.16	-0.25	O'-S	-0.19

Table S3. The calculated E_{ad} difference (ΔE_{ad}) in eV between the results from PBE and PBE-D3 calculations. Each atomic distance difference (Δr) in Å is selected from the closest interacting points between a substrate and an adsorbate, where prime (') represents an atom of O-MXene.

* Δr of H of NH₃ and a metal atom of a substrate

** Δr of N of NH₃ and a metal atom of a substrate