Supporting Information

Structural, optoelectronic and charge transport properties of the complexes of indigo encapsulated in carbon nanotubes

Ankita Joshi, C.N. Ramachandran* Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India-247667 E-mail: ramenfcy@iitr.ac.in

Details of the charge transport calculations

To calculate various charge transport parameters of the studied complexes, we have used the equations^{1, 2} (1-5):

The transfer integral for an electron, t. can be written in terms of energies of LUMO+1 (E_{L+1}) and LUMO (E_L),

$$t_{-} = \frac{E_{L+1} - E_{L}}{2} \tag{1}$$

In case of transfer integral for hole, t_+ can be approximated from the energies of HOMO (E_H) and HOMO-1 (E_{H-1}),

$$t_{+} = \frac{E_{H} - E_{H-1}}{2} \tag{2}$$

Reorganization energy (λ) is given by, (E (charged species) - E^o (charged species)) + (E (neutral geometry obtained from the charged species) – E^o (neutral geometry)), where E is the single-point energy and E^o is the optimized energy.

According to Marcus theory, the rate of charge transfer is given by,

$$k_{CT} = \frac{4\pi^2}{h} \frac{1}{\sqrt{4\pi\lambda k_B T}} t^2 e^{\frac{-\lambda}{k_B T}}$$
(3)

where, *h* is the Planck's constant, *T* is the room temperature (298 K) and $k_{\rm B}$ is the Boltzmann constant.

Diffusion Coefficient, D is calculated using the Smoluchowski equation,

$$D = \frac{L^2 k_{CT}}{2} \tag{4}$$

where, L denotes the centre-to-centre equilibrium distances.

The Einstein relation between mobility (μ) and diffusion constant (D) is given by,

$$\mu = \frac{eD}{k_B T} \tag{5}$$

References

- 1. H. Liu, S. Kang and J. Y. Lee, J. Phys. Chem. B, 2011, 115, 5113-5120.
- 2. A. Joshi and C. N. Ramachandran, Phys. Chem. Chem. Phys., 2016, 18, 14040-14045.

Figure S1. Optimized geometry of the exohedral complex of indigo with (7,7)CNT with the lowest vibrational mode of -114 cm⁻¹ obtained at B97D/6-31g** level of theory.

Figure S2. Optimized geometry of the complex indigo@(7,7)CNT obtained at B3LYP-GD3/6-31g** level of theory

Figure S3. The optical absorption spectra of indigo, (7,7)CNT and the complex indigo@(7,7)CNT obtained at B3LYP-GD3/6-31g** level

Figure S4. Optimized geometries of the complex indigo@(7,7)CNT obtained at ω B97X-D/6-31g** level

Figure S5. The optical absorption spectra of indigo, (7,7)CNT and the complex indigo@(7,7)CNT obtained at ω B97X-D/6-31g** level

Table S1.	Contribution	of various	interaction	energy	components	(dispersion,	electrostatic
and induct	tion) for the co	omplexes ir	digo(a)(n,n)	-CNT, n	=6-8. All the	values are in	kcal/mol

Complex	Dispersion	Electrostatic	Induction
Indigo@(6,6)CNT	-137.29	-92.51	-17.33
Indigo@(7,7)CNT	-71.70	-24.70	-7.82
Indigo@(8,8)CNT	-59.24	-21.14	-6.22

Table S2. Calculated values of hole and electron reorganization energy (λ_+ and λ_-) for free indigo, CNTs and their complexes at B97D/6-31g(d,p) level

System	λ ₊ (eV)	λ. (eV)
Indigo	0.197	0.272
(6,6)CNT	0.051	0.038
(7,7)CNT	0.028	0.033
(8,8)CNT	0.029	0.027
Indigo@(6,6)CNT	0.047	0.040
Indigo@(7,7)CNT	0.038	0.033
Indigo@(8,8)CNT	0.032	0.029

Table S3. Computed values of ionization energy (IE), electron affinity (EA), energy of HOMO and LUMO orbitals (E_{HOMO} , E_{LUMO}) and their energy gap (ΔE_{H-L}) for indigo, (7,7)CNT and their complex obtained at B97D/6-31g(d,p), B3LYP-GD3/6-31G(d,p) and ω B97X-D/6-31g(d,p) levels. All energy values are in eV

System	VIE	AIE	VEA	AEA	E _{HOMO}	E _{LUMO}	ΔE_{H-L}		
B97D/6-31g(d,p)									
Indigo	6.58	6.52	-1.25	-1.38	-4.58	-3.28	1.30		
(7,7)CNT	4.90	4.88	-2.20	-2.21	-4.00	-3.11	0.89		
Indigo@(7,7)CNT	4.89	4.86	-2.18	-2.20	-3.97	-3.10	0.87		
B3LYP-GD3/6-31g(d,p)									
Indigo	6.77	6.68	-1.25	-1.42	-5.27	-2.77	2.51		
(7,7)CNT	5.07	5.04	-2.09	-2.12	-4.35	-2.80	1.55		
Indigo@(7,7)CNT	5.04	5.01	-2.08	-2.10	-4.33	-2.79	1.54		
ωB97X-D/6-31g(d,p)									
Indigo	6.98	6.81	-1.24	-1.43	7.10	1.09	6.01		
(7,7)CNT	5.02	4.38	-2.34	-2.99	-5.16	-2.19	2.97		
Indigo@(7,7)CNT	5.51	5.49	-1.80	-1.86	-5.65	-1.67	3.98		

Table S4. Calculated values of the transfer integral (t), internal reorganization energy (λ), rate constant (k) and carrier mobility (μ) for the most stable complex indigo@(7,7)CNT at different distances (d) obtained at B97D/6-31G(d,p) and B3LYP-GD3/6-31G(d,p) levels

Method	d (Å)	λ ₊ (eV)	t ⁺ (eV)	k+ (s-1)	μ ⁺ [cm ² / (Vs)]	λ_ (eV)	t (eV)	k- (s-1)	μ ⁻ [cm ² / (Vs)]
B97D	4.67		0.055	18.002×10^{13}	7.644	0.033	0.056	21.022 × 10 ¹³	8.918
	2.97	0.038			3.092				3.067
B3LYP- GD3	4.21	0.050	0.061	2.299 × 10 ¹³	0.895	0.052	0.061	4.070×	1.401
	3.28	0.039	0.001		0.544	0.055	0.001	1013	0.851
ωB97X-D	4.40	0.131	0.060	1.080×10^{12}	0.041	0.122	0.076	2.619×10^{12}	0.098

Table S5. The absorption wavelength (λ), oscillator strength (f), corresponding electronic transitions, percentage contribution and molecular orbitals involved for the complex indigo@(7,7)CNT obtained at B3LYP-GD3/6-31g** level

λ (nm)	f	Transition	% Contribution	Molecular orbitals involved in the transition	
		H-1 → L	48		(-134 <u>0</u> -)
751	0.78	H → L+1	49	6 ⁶⁸⁸ 8 6	6 ⁶⁹⁹ 99 6 ***** 6 9 -3 5 6
562	0.08	H-2 → L+2	77		2000 - 2000 2000 - 2000 2000 - 2000
495	0.66	H-6 → L	32	6	
		H → L+6	26	6 ⁶⁹⁹⁹ 9 6	10000 A
488	0.69	H-7 → L	32	9999 1000 1000	
		H →L+7	28	6 ⁶⁸⁸ 8 6	

487	0.05	H-2 → L+4	89	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
384	0.05	H-17 → L+1	29	
383	0.11	H-16 →L+2	25	
		H-15 → L+2	30	
380	0.05	H-2 → L+8	80	(1950) (1950)

Table S6. The absorption wavelength (λ), oscillator strength (f), corresponding electronic transitions, percentage contribution and molecular orbitals involved for the complex indigo@(7,7)CNT obtained at ω B97X-D/6-31g** level

λ (nm)	f	Transition	% Contribution	Molecular orbitals involved in the transition		
		H-4 → L+2	37			
517	0.77	H-1 → L	27			
			H → L+1	29	6 <mark>699</mark> 0 6 6 6 6 6 6	6 <mark>688</mark> 8 6
477	1.22	1.22	H-4 → L+2	50		
			1.22	H-1 → L	20	\bigcirc
		H → L+1	21	6 ⁶⁹⁹ 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 <mark>689</mark> 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		H-2 → L+1	25		6 <mark>689</mark> 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
461	0.10	H-1 → L+3	38	\bigcirc	39999 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

387	0.14	H-1 → L+3	29		39999 39999 39999
386	0.33	H-1 → L+4	24		
		H-7 → L	22	89998 13 (3 23355	
374	1.24	H → L+7	25	6 ⁶⁹⁹ 0 6	
		H-5 → L	37	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
374	0.16	H → L+5	29	66000 6000000	
370	0.11	H-2 → L+1	33		