Spin crossover in discrete polynuclear iron(II) complexes

Ross W. Hogue,† Sandhya Singh† and Sally Brooker*

Department of Chemistry, University of Otago and MacDiarmid Institute of Advanced Materials and Nanotechnology, PO Box 56, Dunedin 9054, New Zealand

†these authors contributed equally

Electronic Supporting Information
Figure S1. Distribution of octahedral distortion parameter, $\Sigma (^\circ)$, for the Fe(II) centres in the 68 dinuclear complexes reviewed herein, presented by type 2A triply bridged, 2B doubly bridged, 2C single bridged, and 2D anion bridged.
Figure S2. Distribution of continuous shape measured value, CShM, of octahedral distortion, for the Fe(II) centres in the 68 dinuclear complexes reviewed herein, presented by type 2A triply bridged, 2B doubly bridged, 2C single bridged, and 2D anion bridged.
Figure S3. Σ^v vs CShM for the 2A dinuclear complexes reviewed herein. Colour code: green 2A triply triazole bridged; violet 2A triply stranded helicates.
Figure S4. Σ (°) vs CShM for tetranuclear complexes reviewed herein. Colour code: blue 4A square; green 4B grids; red 4C cages.
Table S1. Formula, CCDC deposition number, selected parameters, and references, for the structurally characterised complexes out of the 127 complexes reviewed.

<table>
<thead>
<tr>
<th>2A</th>
<th>T (K)</th>
<th>CCDC</th>
<th>Fe-Fe (Å)</th>
<th>Octahedral Distortion from ideal</th>
<th>Σ (°)</th>
<th>Spin state</th>
<th>T_s (K)</th>
<th>SCO</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe:L1(NCS)4] ∙4MeOH</td>
<td>100</td>
<td>824117</td>
<td>3.65</td>
<td>0.072</td>
<td>15</td>
<td>2LS</td>
<td>150</td>
<td>1-step, abrupt</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>824116</td>
<td>3.97</td>
<td>0.137</td>
<td>19</td>
<td>2HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L2(NCS)4] ∙3.5MeOH</td>
<td>100</td>
<td>901398</td>
<td>3.79</td>
<td>0.117, 0.068</td>
<td>17/20</td>
<td>LS-HS</td>
<td>115</td>
<td>Partial gradual 1-step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>901399</td>
<td>3.97</td>
<td>0.129, 0.108</td>
<td>23/23</td>
<td>HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L3(NCS)4] ∙H2O</td>
<td>100</td>
<td>1059254</td>
<td>3.72</td>
<td>0.047, 0.033</td>
<td>13/13</td>
<td>LS-LS</td>
<td>150</td>
<td>1-step, abrupt</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>1059155</td>
<td>3.96</td>
<td>0.193, 0.064</td>
<td>35/17</td>
<td>HS-LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L4(NCSe)2] ∙2DMF-2H2O</td>
<td>92</td>
<td>1506800</td>
<td>3.63</td>
<td>0.032, 0.035</td>
<td>12/13</td>
<td>LS-LS</td>
<td>164</td>
<td>1-step, Sharp</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>1506799</td>
<td>3.95</td>
<td>0.130, 0.065</td>
<td>24/20</td>
<td>HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L5(NCS)4] ∙MeOH-EtOH</td>
<td>100</td>
<td>NA</td>
<td>3.92</td>
<td>0.077, 0.080</td>
<td>19/24</td>
<td>LS-HS</td>
<td>116</td>
<td>Partial gradual</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>296</td>
<td>NA</td>
<td>3.99</td>
<td>0.053, 0.160</td>
<td>16/26</td>
<td>HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L5(NCS)4] ∙2EtOH</td>
<td>296</td>
<td>NA</td>
<td>3.97</td>
<td>0.044, 0.077</td>
<td>14/19</td>
<td>HS-HS</td>
<td>122</td>
<td>Partial gradual</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe:L6(NCS)4] ∙MeOH-EtOH</td>
<td>173</td>
<td>884897</td>
<td>3.92</td>
<td>0.078, 0.089</td>
<td>19/24</td>
<td>LS-HS</td>
<td>116</td>
<td>Partial gradual</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>[Fe:L7(NCS)4] ∙3ClO4</td>
<td>295</td>
<td>100926</td>
<td>3.94</td>
<td>0.102, 0.095</td>
<td>23/24/</td>
<td>HS-HS-HS</td>
<td>111</td>
<td>Partial sharp</td>
</tr>
<tr>
<td></td>
<td>[Fe:L7(NCS)4] ∙(H2O)2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe:L8(NCS)4] ∙4MeCN</td>
<td>295</td>
<td>622761</td>
<td>9.163</td>
<td>0.698</td>
<td>61.7</td>
<td>LS</td>
<td>341, 402</td>
<td>Gradual and incomplete, two step.</td>
<td>N6</td>
</tr>
<tr>
<td>Fe3Fe(L9)44 ∙5MeOH</td>
<td>180</td>
<td>239359</td>
<td>11.396</td>
<td>0.872</td>
<td>64.0</td>
<td>LS</td>
<td>not stated</td>
<td>Gradual Incomplete, One step</td>
<td>N6</td>
</tr>
<tr>
<td>Fe3Fe(L9)44 ∙2MeCN</td>
<td>180</td>
<td>239358</td>
<td>11.556</td>
<td>0.807, 1.502</td>
<td>63.1, 82.8</td>
<td>LS-HS</td>
<td>not stated</td>
<td>Gradual Incomplete, two-step</td>
<td>N6</td>
</tr>
<tr>
<td>Fe3Fe(L9)44 ∙2MeCN</td>
<td>180</td>
<td>239362</td>
<td>11.584</td>
<td>1.250, 1.736</td>
<td>76.1, 93.6</td>
<td>HS-HS</td>
<td>not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe3Fe(L10)44 ∙2MeCN</td>
<td>100</td>
<td>1568781</td>
<td>11.714</td>
<td>1.572</td>
<td>76</td>
<td>Mixed HS/LS</td>
<td>↓155 ↑170</td>
<td>Gradual Incomplete, one step, hysteresis of 15 K</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

S6
<p>	Compound	Formula	ΔH/kJ mol⁻¹							
Fe₂(L11)(BF₄)₂·4MeCN	100	1568783	11.623	1.494, 1.082	84.9, 74.5	HS-(mixed)	LS/LS	↓150	Gradual, 15 k hysteresis	N6
Fe₂(L12)(ClO₄)₂·2MeCN	150	702672	11.452	1.058, 1.001	65.2, 61.8	LS-S	140	Complete, very narrow hysteresis, one-step	N6	
Fe₂(L12)(ClO₄)₂·1.5H₂O	150	836247	11.45	1.837, 0.960	62.3, 85.3	LS-HS	210-265	Gradual, incomplete, hysteresis, one step	N6	
Fe₂(L13)(BF₄)₂·4MeCN·0.5H₂O	150	1540558	11.33	0.735, 0.708	54.4, 65	LS-LS	348	Complete, One-step, abrupt	N6	
Fe₂(L13)(BF₄)₂·2MeCN	298	1540559	11.36	0.720, 1.000	58.3, 70	LS-LS/HS(mixed)	-	Abrupt, 7K wide hysteresis	N6	
Fe₂(L14)(BF₄)₂·2MeNO₂·1H₂O	173	738553	3.8695	1.293, 6.084	66.4, 158.5	LS-HS	↑190 - 183	Abrupt, incomplete, one-step	N6	
Fe₂(L14)(ClO₄)₂·5MeNO₂	103	647353	3.8507	1.360, 6.154	63.8, 152.5	LS-HS	240	Abrupt, incomplete, one-step	N6	
Fe₂(L14)(ClO₄)₂·5MeNO₂	293	647354	4.0362	3.698, 5.005	116.0, 124.2	HS-HS	-	-	-	-
Fe₂(L15)(ClO₄)₂·2MeCN·0.5H₂O	163	738562	3.8450	3.656, 1.057	137.6, 64.6	HS-LS	120	Incomplete, abrupt, one step	N6	
Fe₂(L15)(ClO₄)₂·2MeCN	113	738561	4.178	2.815, 2.886	132.16, 135.29	HS-HS	-	HS	N6	
Cl[Fe₂(L16)]Cl(PF₆)₂·5.7MeOH	100	1455576	9.731	3.522, 0.755	115.8, 58.8	HS-LS	302	Gradual Incomplete, one step	N6	
Cl[Fe₂(L16)]Cl(PF₆)₂·5.7MeOH	280	1455581	9.730	3.337, 0.874	113.2, 62.4	HS-LS	-	-	-	
Cl[Fe₂(L16)]Cl(PF₆)₂·3MeOH·H₂O	90	1455315	9.675	0.943	62.1	LS	160, 265	Gradual Complete, two step, hysteresis	N6	
Cl[Fe₂(L16)]Cl(PF₆)₂·3MeOH·H₂O	300	1455317	9.799	2.424	95.1	HS	-	-	-	
Br[Fe₂(L16)]Br(PF₆)₂·4MeO·H	100	1455591	9.670	3.275, 0.810	113.7, 61.2	HS-LS	258	Gradual Incomplete, one step	N6	
Br[Fe₂(L16)]Br(PF₆)₂·4MeO·H	280	1455597	9.705	3.020, 1.615	109.8, 84.1	HS-HS	-	-	-	
Br[Fe₂(L16)]Br(PF₆)₂·MeO·H·H₂O	90	1455322	9.694	1.005	64.5	LS	200	Gradual Complete, one step	N6	
Br[Fe₂(L16)]Br(PF₆)₂·MeO·H·H₂O	296	1455320	9.786	2.468	96.7	HS	-	-	-	</p>
<table>
<thead>
<tr>
<th>2B</th>
<th>T (K)</th>
<th>CCDC</th>
<th>Fe-Fe (Å)</th>
<th>Octahedral Distortion from ideal</th>
<th>Σ (°)</th>
<th>Spin state</th>
<th>T_h (K)</th>
<th>SCO</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe_{Ⅱ}{(L17)}{2}] [(PF_6){6}]</td>
<td>120</td>
<td>1491571</td>
<td>7.855</td>
<td>0.696</td>
<td>42.6</td>
<td>LS</td>
<td>↑437 ↓426</td>
<td>Abrupt, Two step, 11K wide hysteresis, Complete</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(L18)}{2}] [(AsF_6){6}]</td>
<td>120</td>
<td>1544126</td>
<td>10.867</td>
<td>0.596, 0.635</td>
<td>48.3, 47.6</td>
<td>LS-LS</td>
<td>↑485 ↓401</td>
<td>Gradual, 84 K wide hysteresis, Complete</td>
<td>N6</td>
</tr>
<tr>
<td>Fe_{Ⅱ}{(PMAT)}{2} (BF_4){2}</td>
<td>123</td>
<td>247511</td>
<td>4.212</td>
<td>0.759, 4.779</td>
<td>65.0, 133.1</td>
<td>LS-HS</td>
<td>224</td>
<td>Abrupt, incomplete, two step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>247510</td>
<td>4.296</td>
<td>3.176</td>
<td>117.5</td>
<td>HS</td>
<td>-</td>
<td>-</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMPh){2}}] [(BF_4){6}]</td>
<td>91</td>
<td>841469</td>
<td>4.626</td>
<td>3.191</td>
<td>117.8</td>
<td>HS</td>
<td>↑217 ↓194</td>
<td>Abrupt, 22 K wide hysteresis, incomplete,</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMBzT)}{2}] [(BF_4){6}]</td>
<td>91</td>
<td>921924</td>
<td>4.178</td>
<td>2.379</td>
<td>2x 99.3</td>
<td>2 HS</td>
<td>147</td>
<td>Gradual, one step, in complete</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PSPhT)}{2}] [(BF_4){6}]</td>
<td>100</td>
<td>1439745</td>
<td>4.216</td>
<td>2.733</td>
<td>109.8</td>
<td>HS</td>
<td>265, 210 and 87</td>
<td>Gradual, three step, complete</td>
<td>N4S2</td>
</tr>
<tr>
<td></td>
<td>1439747</td>
<td>4.231</td>
<td>2.371</td>
<td>105.25</td>
<td>HS</td>
<td>-</td>
<td>HS</td>
<td>N4S2</td>
<td></td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PSmpPhT)}{2}] [(BF_4){6}]</td>
<td>1439744</td>
<td>4.189</td>
<td>2.015</td>
<td>87.6</td>
<td>Mix LS-HS</td>
<td>109</td>
<td>Gradual, one step, incomplete</td>
<td>N4S2</td>
<td></td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMTD)}{2}] [(BF_4){6}]</td>
<td>173</td>
<td>1062666</td>
<td>3.946</td>
<td>0.544, 0.766</td>
<td>58.36, 65.40</td>
<td>LS-LS</td>
<td>not stated</td>
<td>Gradual, incomplete</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>1062665</td>
<td>3.952</td>
<td>0.554, 0.763</td>
<td>59.2, 66.1</td>
<td>LS-LS</td>
<td>not stated</td>
<td>Gradual, incomplete</td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMTD)}{2}] [(OTf){6}]</td>
<td>173</td>
<td>1062667</td>
<td>3.948</td>
<td>0.561, 0.551</td>
<td>61.4, 57.6</td>
<td>LS-LS</td>
<td>not stated</td>
<td>Gradual, incomplete</td>
<td>N6</td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMTD)}{2}] [(ClO_4){6}]</td>
<td>173</td>
<td>1448812</td>
<td>3.950</td>
<td>0.575, 0.585</td>
<td>59.1, 59.7</td>
<td>LS-LS</td>
<td>380</td>
<td>Abrupt, complete</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>1448813</td>
<td>3.953</td>
<td>0.567, 0.585</td>
<td>58.7, 59.8</td>
<td>LS-LS</td>
<td>380</td>
<td>Abrupt, complete</td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(PMOD)}{2}] [(ClO_4){6}]</td>
<td>193</td>
<td>1434702</td>
<td>4.402</td>
<td>3.798</td>
<td>121.0</td>
<td>HS</td>
<td>150</td>
<td>Abrupt, Incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>1434701</td>
<td>4.326</td>
<td>5.427, 1.119</td>
<td>136.7, 70.2</td>
<td>HS-LS</td>
<td>150</td>
<td>Abrupt, 26 K wide hysteresis, incomplete, one step</td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>[Fe_{Ⅱ}{(L19)}{2}] [(NCS){6}]</td>
<td>173</td>
<td>1434703</td>
<td>4.378</td>
<td>4.012</td>
<td>126.1</td>
<td>HS</td>
<td>-</td>
<td>HS</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>1434704</td>
<td>4.361</td>
<td>3.916</td>
<td>125.5</td>
<td>HS</td>
<td>150</td>
<td>Abrupt, Incomplete, two step</td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>[{Fe}{Ⅱ}{(L19)}{2}] [(NCS)_{6}]</td>
<td>25</td>
<td>292520</td>
<td>7.06</td>
<td>0.177, 0.222</td>
<td>28.4, 35.2</td>
<td>LS-LS</td>
<td>80, 180</td>
<td>Abrupt, incomplete, two step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>292521</td>
<td>7.16</td>
<td>0.171, 0.453</td>
<td>27.7, 45.9</td>
<td>LS-HS</td>
<td>-</td>
<td>-</td>
<td>N6</td>
</tr>
<tr>
<td>Ref.</td>
<td>[Fe((L_{19}))(NCS)(_2)](-\text{1CHCl}_2)</td>
<td>250</td>
<td>292522</td>
<td>7.32</td>
<td>0.528, 0.471</td>
<td>41.8, 46.7</td>
<td>HS-HS</td>
<td>Gradual, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Ref.</td>
<td>[Fe(2)L({20})(_3)(NCS)(_2)(Py)]</td>
<td>150</td>
<td>899921</td>
<td>4.35</td>
<td>3.169</td>
<td>2\times 96.96</td>
<td>HS-HS</td>
<td>Abrupt, One step, incomplete</td>
<td>N6</td>
</tr>
<tr>
<td>Ref.</td>
<td>[Fe(2)L({21})(MeCN)(_2)](_4)BF(_4)</td>
<td>100</td>
<td>1487544</td>
<td>3.95</td>
<td>0.937</td>
<td>2\times 52.14</td>
<td>2LS</td>
<td>NA</td>
<td>Gradual, one step</td>
</tr>
</tbody>
</table>

Table 2C

Ref.	[Fe\(_2\)L\(_{22}\)\(_3\)(OTf)\(_3\)(MeCN)]	133	1023524	4.19	3.065, 3.239	75.7	2LS-LS/HS (mix)	210, 130	Gradual, incomplete, one step	N6	29
Ref.	[Fe\(_2\)L\(_{22}\)\(_3\)(OTf)\(_3\)(MeCN)]	133	1023524	4.19	3.065, 3.239	75.7	2LS-LS/HS (mix)	210, 130	Gradual, incomplete, one step	N6	29
Ref.	[Fe\(_2\)L\(_{23}\)\(_3\)]\(_3\)DMF-H\(_2\)O	123	899998	6.94	0.877	52, 76.1	HS	-	-	N6	30
Ref.	[Fe\(_2\)L\(_{24}\)\(_3\)]\(_3\)DMF-H\(_2\)O	123	899999	6.75	0.444, 0.884	52, 76.1	HS	-	-	N6	30
Ref.	[Fe\(_2\)L\(_{25}\)\(_3\)]\(_3\)BPh\(_4\)\(_4\)·2MeOH	110	899159	7.17	1.521	72.69	2LS	-	-	N6	31
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{27}\))·2MeOH	293	807893	13.79	0.769	2\times 65.9	2 LS	159	Abrupt, complete, one step	N6	32
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{29}\))	293	807895	13.85	1.774, 1.005	88.1, 65.2	HS-HS	-	-	N6	32
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{29}\))	90	807893	13.38	0.224	2\times 38.2	LS	182	Gradual, complete, two step	N6	32
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{29}\))	183	807892	13.55	0.418	2\times 82	2LS/LS	182	Gradual, complete, two step	N6	32
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{29}\))	300	807894	13.74	0.875	105.8	HS	182	Gradual, complete, two step	N6	32
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{30}\))·2MeOH	110	864188	11.13	0.422	37	LS	210	Abrupt, complete, two step	N6	33
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{30}\))·2MeOH	290	864186	11.45	1.220	67.4	HS	-	-	N6	33
Ref.	[Fe\(_2\)L\(_{26}\)\(_3\)]\(_3\)(NCS)\(_4\)(L\(_{30}\))·2MeOH	293	846878	14.03	0.901	80.3	HS	-	-	N6	34

The table provides data on a series of compounds with their respective Fe-Fe distances, octahedral distortions from ideal, spin states, and SCO (Spectral Change on Oxidation) values.
<table>
<thead>
<tr>
<th>2D</th>
<th>T (K)</th>
<th>CCDC</th>
<th>Fe-Fe (Å)</th>
<th>Octahedral Distortion from ideal</th>
<th>Σ (°)</th>
<th>Spin state</th>
<th>T<sub>x</sub> (K)</th>
<th>SCO</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Fe<sub>2</sub>(L<sub>34</sub>)<sub>2</sub>(dca)]·(PF<sub>6</sub>)<sub>3</sub>)</td>
<td>90</td>
<td>263318</td>
<td>2X 8.56</td>
<td>0.451, 0.430</td>
<td>2x 47, 2x 49.4</td>
<td>4x LS</td>
<td>342, 157K</td>
<td>two step, gradual, complete</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(((FeL<sub>35</sub>)<sub>2</sub>)[A<sub>1</sub>]<sub>2</sub>)</td>
<td>296</td>
<td>1413422</td>
<td>7.075</td>
<td>0.409</td>
<td>2x 51</td>
<td>2x LS</td>
<td>365</td>
<td>abrupt, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(((FeL<sub>36</sub>)<sub>2</sub>)[A<sub>1</sub>]<sub>2</sub>)</td>
<td>100</td>
<td>1413424</td>
<td>7.173</td>
<td>0.425</td>
<td>48</td>
<td>2x LS</td>
<td>180</td>
<td>abrupt, one step, incomplete</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>2</sub>(L<sub>37</sub>)<sub>2</sub>(u-NCS)(NCS)<sub>2</sub>-2(i-PrOH)]</td>
<td>100</td>
<td>1057341</td>
<td>5.51</td>
<td>0.595</td>
<td>14</td>
<td>2 LS</td>
<td>207</td>
<td>gradual, complete, one step</td>
<td>N5S</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fe<sub>2</sub>(L<sub>35</sub>)<sub>2</sub><sub>2</sub></td>
<td>225</td>
<td>NA</td>
<td>8.00</td>
<td>3.593</td>
<td>2x 122.9</td>
<td>2 HS</td>
<td>160</td>
<td>gradual, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fe<sub>2</sub>(L<sub>35</sub>)<sub>2</sub><sub>2</sub></td>
<td>225</td>
<td>NA</td>
<td>8.06</td>
<td>4.044</td>
<td>2x 123.5</td>
<td>2 HS</td>
<td>124</td>
<td>gradual, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>2</sub>(L<sub>35</sub>)<sub>2</sub>]</td>
<td>100</td>
<td>NA</td>
<td>7.97</td>
<td>2.708</td>
<td>2x 98.7</td>
<td>2x Mix LS/HS</td>
<td>121</td>
<td>gradual, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>2</sub>(L<sub>35</sub>)<sub>2</sub>]</td>
<td>100</td>
<td>NA</td>
<td>7.97</td>
<td>2.921</td>
<td>2x 102.4</td>
<td>Mix LS/HS</td>
<td>110</td>
<td>gradual, incomplete, one step</td>
<td>N6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>3</sub>(L<sub>37</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>6</sub>]·(OTf)<sub>6</sub></td>
<td>105</td>
<td>NA</td>
<td>3.76</td>
<td>-</td>
<td>35.6, 29, 35.6</td>
<td>HS-LS-HS</td>
<td>203</td>
<td>Abrupt, incomplete, one step</td>
<td>O3N3-N6-N3O3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>3</sub>(L<sub>39</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>6</sub>]·(OTf)<sub>6</sub></td>
<td>120</td>
<td>134367</td>
<td>3.78</td>
<td>0.106, 0.043</td>
<td>20,19,9,20</td>
<td>HS-LS-HS</td>
<td>290</td>
<td>gradual, incomplete, one step</td>
<td>O3N3-N6-N3O3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>3</sub>(L<sub>40</sub>)<sub>6</sub>(tos)<sub>6</sub>].2H<sub>2</sub>O</td>
<td>298</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>22,12,22</td>
<td>HS-HS-HS</td>
<td>242</td>
<td>gradual, incomplete, one step</td>
<td>O3N3-N6-N3O3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>3</sub>(L<sub>41</sub>)<sub>6</sub>(tos)<sub>6</sub>].2MeOH.8H<sub>2</sub>O</td>
<td>294</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>44,5, 44</td>
<td>HS-HS-HS</td>
<td>245</td>
<td>gradual, incomplete, one step</td>
<td>O3N3-N6-N3O3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[Fe<sub>3</sub>(L<sub>42</sub>)<sub>6</sub>(EtOH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>][tos]<sub>6</sub>.2EtOH</td>
<td>100</td>
<td>815193</td>
<td>3.84</td>
<td>0.093, 0.035</td>
<td>27,17,27</td>
<td>HS-LS-HS</td>
<td>148</td>
<td>gradual, incomplete, one step</td>
<td>O2O1-N3-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>815194</td>
<td>3.87</td>
<td>0.062, 0.015</td>
<td>19, 9, 19</td>
<td>HS-HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>T (K)</td>
<td>CCDC</td>
<td>Fe-Fe (Å)</td>
<td>Octahedral Distortion from ideal</td>
<td>Σ (*)</td>
<td>Spin state</td>
<td>Tᵢ (K)</td>
<td>SCO</td>
<td>ref</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>[Fe₃L₄₃(H₂O)₈]·8(H₂O)</td>
<td>100</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>18.8,18.2,18.8</td>
<td>HS-(mix)LS/HS-HS</td>
<td>150</td>
<td>gradual, incomplete, one step</td>
<td>O₃N₃-N₆-N₃O₂ O₁</td>
</tr>
<tr>
<td>[Fe₃L₄₄(H₂O)₈.(Me₂NH₂)₆.5H₂O]</td>
<td>100</td>
<td>1016539</td>
<td>3.79,3.80</td>
<td>0.115, 0.064, 0.199</td>
<td>24.24,23</td>
<td>HS-LS-HS</td>
<td>400/310</td>
<td>gradual, incomplete, one step, 90 K wide hysteresis</td>
<td>O₃N₃-N₆-N₃O₃</td>
</tr>
<tr>
<td>[Fe₃L₄₅(tos)₄.(MeOH)₄.(tos)₄.4MeOH]</td>
<td>90</td>
<td>1442227</td>
<td>3.82</td>
<td>0.044, 0.281</td>
<td>34,20,34</td>
<td>HS-LS-HS</td>
<td>NA</td>
<td>gradual, incomplete, one step</td>
<td>O₂O₁-N₃-N₆-N₃O₂ O₁</td>
</tr>
<tr>
<td>[Fe₃L₄₆(A₆)₆]</td>
<td>250</td>
<td>1547824</td>
<td>3.66</td>
<td>0.001, 0.017</td>
<td>8,4,8</td>
<td>LS-LS-LS</td>
<td>318</td>
<td>Abrupt, complete, one step</td>
<td>N₃N₃-N₆-N₃N₃</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>1500725</td>
<td>3.86</td>
<td>0.007, 0.085</td>
<td>23,8,23</td>
<td>HS-HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe₃L₄₇₃(SCN)₆(H₂O)₂][(SCN)₂]</td>
<td>150</td>
<td>1054574</td>
<td>3.83,3.84</td>
<td>0.080, 0.123, 0.144</td>
<td>31,20,36</td>
<td>HS-LS-HS</td>
<td>202</td>
<td>gradual, incomplete, one step</td>
<td>O₅S-N₆-N₅O</td>
</tr>
<tr>
<td></td>
<td>296</td>
<td>1054575</td>
<td>3.92,3.92</td>
<td>0.049, 0.096, 0.122</td>
<td>25,16,31</td>
<td>HS-HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe₃L₄₇₃(SCN)₆(H₂O)][(SCN)₂]</td>
<td>100</td>
<td>1578878</td>
<td>3.88,3.83</td>
<td>0.104, 0.173, 0.405</td>
<td>37,21,47</td>
<td>HS-LS-HS</td>
<td>160</td>
<td>gradual, incomplete, one step</td>
<td>O₅S-N₆-N₃N₃</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>1578880</td>
<td>3.93,3.91</td>
<td>0.099, 0.076, 0.411</td>
<td>18,21,45</td>
<td>HS-HS-HS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4A

<p>| Fe₃L₄₅₃(L₄₈)₃(μ-NC)₆(PF₆)₄ | 100 | 274456 | 5.00,4.95,4.99,4.99 | 0.468, 0.583, 0.442, 0.311 | 52.3,61.4,47.1,45.08 | LS-LS-LS-LS | 160,380 | Gradual, Two step, | N₄C₂⁻N₆ |
| | 200 | 274455 | 5.04,5.02,4.99,4.99 | 0.482, 1.794, 0.493, 0.300 | 50.3,108.1,47.6,44.6 | LS-HS-LS-LS | | | |</p>
<table>
<thead>
<tr>
<th>T (K)</th>
<th>CCDC</th>
<th>Fe-Fe (Å)</th>
<th>Octahedral Distortion from ideal</th>
<th>Σ (°)</th>
<th>Spin state</th>
<th>T½ (K)</th>
<th>SCO</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>274454</td>
<td>5.05, 5.02, 5.0, 4.99</td>
<td>0.481, 1.827, 0.474, 0.332</td>
<td>49.4, 109.4, 46.4, 47.5</td>
<td>LS-HS-LS-LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>702340</td>
<td>4.96, 4.98, 4.94, 4.95</td>
<td>0.446, 0.497</td>
<td>48.9, 56.2</td>
<td>2LS-2LS</td>
<td>not stated</td>
<td>Gradual, One step, incomplete</td>
<td>N₆C₂-N₆</td>
</tr>
<tr>
<td>100</td>
<td>918599</td>
<td>4.94, 4.97, 4.94, 4.95</td>
<td>0.709, 0.375, 0.425, 0.639</td>
<td>68.3, 49, 54.8, 69.9</td>
<td>LS-HS-LS-LS</td>
<td>not stated</td>
<td>Gradual, Incomplete, one step</td>
<td>N₆C₂-N₆</td>
</tr>
<tr>
<td>210</td>
<td>918600</td>
<td>4.59, 4.99, 4.96, 4.98</td>
<td>0.639, 1.147, 0.348, 0.826</td>
<td>68.8, 73.7, 46.8, 79</td>
<td>LS-HS-LS-LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>827475</td>
<td>8.23, 8.40</td>
<td>0.496, 0.461</td>
<td>60.2, 54.1</td>
<td>2LS-2LS</td>
<td>302, 194</td>
<td>Gradual, Two step, complete,</td>
<td>N₆N₆</td>
</tr>
<tr>
<td>250</td>
<td>827476</td>
<td>8.44, 8.36</td>
<td>1.200, 0.493</td>
<td>90.6, 57.5</td>
<td>2HS-2LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>827477</td>
<td>8.51, 8.49</td>
<td>1.646, 1.112</td>
<td>98.0, 88.2</td>
<td>2HS-2HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>NA</td>
<td>4.98, 4.99</td>
<td>0.343, 0.329</td>
<td>43.9, 42.6</td>
<td>2LS-2LS</td>
<td>not stated</td>
<td>Gradual, Incomplete, one-step</td>
<td>N₆C₂-N₆</td>
</tr>
<tr>
<td>370</td>
<td>NA</td>
<td>5.07, 5.04</td>
<td>0.183, 1.030</td>
<td>31.1, 86.5</td>
<td>2LS-2HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>140267</td>
<td>6.42, 6.35, 6.32, 6.42</td>
<td>2.607, 2.490, 2.765, 5.922</td>
<td>87.9, 86.6, 91.1, 145.8</td>
<td>HS-3LS</td>
<td>not stated</td>
<td>Gradual, incomplete, one step</td>
<td>N₆</td>
</tr>
<tr>
<td>293</td>
<td>140266</td>
<td>6.43, 6.47, 6.50, 6.47</td>
<td>5.300, 3.638, 5.757, 6.022</td>
<td>136.6, 108.6, 142.7, 145.7</td>
<td>3HS-LS</td>
<td></td>
<td></td>
<td>N₆</td>
</tr>
</tbody>
</table>

Note: The table above contains data on various compounds, including their formulae, crystallographic data, and phase transitions. The entries include the temperature (T), crystallographic data (CCDC), Fe-Fe distance (Å), octahedral distortion from ideal, Σ (°), spin state, T½ (K), and SCO (S). The references (ref) are indicated in the last column.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Experimental Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe^{II}L53]_4^2(ClO_4)_6·3MeCN·5H_2O</td>
<td>120</td>
</tr>
<tr>
<td>[Fe^{II}L54]_4^2(ClO_4)_7(CH_3NO)_2·6H_2O</td>
<td>120</td>
</tr>
<tr>
<td>[Fe^{II}L65]_4^2Cl·9H_2O</td>
<td>153</td>
</tr>
<tr>
<td>[Fe^{II}L66]_4^2(BF_4)_4·7MeOH·2H_2O</td>
<td>123</td>
</tr>
<tr>
<td>[Fe^{II}L66]_4^2(BF_4)_4·MeOH·2H_2O</td>
<td>283</td>
</tr>
<tr>
<td>[Fe^{II}L67]_4^2(BF_4)_4·4DMF</td>
<td>133</td>
</tr>
<tr>
<td>[Fe^{II}L67]_4^2(BF_4)_4·4DMF</td>
<td>233</td>
</tr>
<tr>
<td>[Fe^{II}L67]_4^2(BF_4)_6·3CH_3CN</td>
<td>133</td>
</tr>
<tr>
<td>[Fe^{II}(HL67)·(L67)]_4[BF_4]_4·2CH_3CN trinuclear</td>
<td>133</td>
</tr>
<tr>
<td>[Fe^{II}L68]_4^2(PF_6)_6·DMF·THF</td>
<td>133</td>
</tr>
<tr>
<td>[Fe^{II}L68]_4^2(PF_6)_6·4DMF</td>
<td>133</td>
</tr>
<tr>
<td>Complex</td>
<td>T (K)</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>FeII(68)44·0.25DMF·D ME</td>
<td>133</td>
</tr>
<tr>
<td>FeII(68)44·THF·4H2O</td>
<td>293</td>
</tr>
<tr>
<td>[FeII(68)4]Br·4DMF·2H2O</td>
<td>133</td>
</tr>
<tr>
<td>FeII(68)42·2MeCN</td>
<td>293</td>
</tr>
<tr>
<td>FeII(70)48·12MeNO2·C6H14·4H2O</td>
<td>180</td>
</tr>
<tr>
<td>FeII(70)43(F)3·2MeNO2·H2O</td>
<td>180</td>
</tr>
</tbody>
</table>

4C
<table>
<thead>
<tr>
<th>Compound</th>
<th>Form</th>
<th>Raman Shifts</th>
<th>Spin State</th>
<th>Optical Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe<sup>II</sup>(L71)<sub>4</sub><sub>8</sub>·14.75CH<sub>3</sub>CN·4.5C<sub>6</sub>H<sub>6</sub>·3H<sub>2</sub>O</td>
<td>293</td>
<td>907706</td>
<td>14.46, 14.29, 14.11, 14.52, 14.46, 14.11</td>
<td>1.125, 1.181</td>
<td>66.9, 69.5</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L73)<sub>4</sub>(CF<sub>3</sub>SO<sub>3</sub>)<sub>8</sub></td>
<td>100</td>
<td>908546</td>
<td>6×11.8 5</td>
<td>1.043</td>
<td>65.1</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L74)<sub>4</sub><sub>8</sub>·16CH<sub>3</sub>CN</td>
<td>100</td>
<td>1057843</td>
<td>3×14.61, 3×14.78, 3×14.54, 3×14.94, 3×14.56, 3×15.14</td>
<td>1.643, 0.911, 0.997, 2.111, 1.543, 1.035</td>
<td>82.0, 66.8, 69.6, 121.5, 86.1, 74.7</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L75)<sub>4</sub><sub>8</sub> (R)</td>
<td>150</td>
<td>1025013</td>
<td>3×9.56, 3×9.67</td>
<td>0.878, 0.595</td>
<td>61.1, 49.5</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L75)<sub>4</sub><sub>8</sub> (S)</td>
<td>123</td>
<td>1025014</td>
<td>3×9.66, 3×9.48</td>
<td>0.999, 0.433</td>
<td>60.2, 42.0</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L76)<sub>4</sub><sub>8</sub>·11.59MeCN·2C<sub>6</sub>H<sub>12</sub>·H<sub>2</sub>O (R)</td>
<td>123</td>
<td>1025015</td>
<td>9.66, 9.45, 9.70, 9.59, 9.64, 9.79</td>
<td>0.739, 0.828, 0.761, 0.995</td>
<td>55.8, 57.8, 55.8, 63.8</td>
</tr>
<tr>
<td>Fe<sup>II</sup>(L76)<sub>4</sub><sub>8</sub>·3MeCN (S)</td>
<td>123</td>
<td>1025016</td>
<td>9.74, 9.70, 9.68, 9.41</td>
<td>0.763, 0.749, 0.868, 0.968</td>
<td>56.4, 54.6, 60.3, 63.1</td>
</tr>
<tr>
<td>Complex</td>
<td>T (K)</td>
<td>CCDC</td>
<td>Fe-Fe (Å)</td>
<td>Octahedral Distortion from ideal</td>
<td>Σ (°)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>[{FeIl(L77)}3][ClO4]3·2MeCN (S)</td>
<td>123</td>
<td>1025017</td>
<td>9.77, 9.76</td>
<td>3x9.53, 3x9.81</td>
<td>0.818, 0.791</td>
</tr>
<tr>
<td>[{FeII(L78)}6][ClO4]6·2MeCN</td>
<td>173</td>
<td>1447306</td>
<td>11.35, 11.04, 11.90, 11.73, 11.95, 11.18, 3x11.9, 3x11.7, 8</td>
<td>0.443, 0.525, 0.540, 0.482, 0.799, 0.540</td>
<td>42.9, 45.3, 48.6, 42.7, 52.9, 49.9</td>
</tr>
</tbody>
</table>

References