Design strategies of surface basicity for NO oxidation over novel Sn-Co-O catalyst in the presence of H₂O

Huazhen Chang*a, Mingguan Liab,c, Zhenguo Lib, Lei Duana, Chaocheng Zhao*c, Junhua Lib*, and Jiming Haob

a School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

b State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China

c College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China

Electronic Supplementary Information

* Corresponding author. Tel.: +86-10-62512572; +86-532-86981719; +86-10-62771093;
E-mail address: chz@ruc.edu.cn (H. Chang); zhaochch@upc.edu.cn(C. Zhao); lijunhua@tsinghua.edu.cn (J. Li).
1. Catalyst characterization

In this study, the powder X-ray diffraction (XRD) patterns were characterized on a Rigaku D/max-2500 diffractometer. The H$_2$-TPR was characterized by a Micromeritics ChemiSorb 2720 device. The sample (~50mg) was preheated in a N$_2$ flow at 350°C for 60min, then it was heated in a 10 % H$_2$/He flow to make the temperature increased linearly from 50 to 1000 °C at a heating rate of 10 Cmin$^{-1}$. The depleted amount of H$_2$ was evaluated by the signal of a thermal conductivity detector. NO+O$_2$-TPD (temperature-programmed desorption) experiment consisted of three steps: (1) sweep of the sample in N$_2$ at 350 °C for 1 h; (2) adsorption of NO for about 1 h by passing a gas mixture containing 500 ppm NO + 5% O$_2$ with N$_2$ as balance gas and the total flow rate was 200 ml/min through the reactor at 100 °C; (3) TPD measurements were carried out up to 600 °C at a heating rate of 10 °C /min with the total flow rate of 200 ml/min N$_2$. The in-situ DRIFTS experiments were conducted on a Nicolet 6700 FTIR spectrophotometer and a liquid nitrogen-cooled MCT detector. Prior to each experiment, the sample was pretreated in N$_2$ flow at 400 °C for 1 h to remove the impurities. After decreasing temperature to 30 °C, the samples were exposed to a NO + O$_2$ steam for 30 min and a N$_2$ flow for 10 min to remove the weakly adsorbed NO$_x$, then the spectra were collected after heating to each desired temperature.

2. CO$_2$-TPD
Fig. S1. CO$_2$-TPD spectra of Sn(0.5)-Co-O and Co$_3$O$_4$ catalysts prepared by different precipitants.

3. NO oxidation performance

Fig.S2 NO conversion over Sn(0.9)-Co-O catalyst. Reaction conditions: 0.15 g samples, 500 ppm NO, 10 % O$_2$, N$_2$ balance, GHSV=3.5×104 h$^{-1}$.

The Co$_3$O$_4$ catalyst showed good NO oxidation activity in a wide temperature range of 250-
300 °C and the best performance was obtained at 300 °C. After addition of Sn, the NO oxidation efficiency was not affected obviously comparing with Co$_3$O$_4$, until the ratio of Sn/(Sn+Co) reached to 0.5. Nevertheless, the SnO$_2$ catalyst exhibited nearly no activity in NO oxidation. As reported in literature, the NO oxidation reaction becomes thermodynamic controlled at high temperatures 1,2. The activity decreased as the temperature increasing over all of catalyts at >300 °C.

4. XRD analysis

The crystal structure of Sn-Co-O mixed metal oxides catalysts was determined by XRD and the diffraction patterns are shown in Figure S2. For Co$_3$O$_4$ catalyst, it could be observed that sharp diffraction peaks appeared which could be attributed to Co$_3$O$_4$. For Sn(0.25)-Co-O and Sn(0.5)-Co-O catalysts, besides the peaks attributed to Co$_3$O$_4$, new peaks correspond to rutile SnO$_2$ of a tetragonal structure were presented. It indicated that two different crystal structure were formed in these binary metal oxides catalysts.

5. Redox ability

The H$_2$-TPR spectra of SnO$_2$, Sn-Co-O and Co$_3$O$_4$ catalysts are shown in Fig. S2. The Co$_3$O$_4$ catalyst displayed two reduction peaks at 320°C and 400°C. According to the results of XRD diffraction, only Co$_3$O$_4$ exists in Co$_3$O$_4$ catalyst. Therefore, the reduction peak at 320°C can be attributed to the reduction of the catalyst Co$_2$O$_3$ to CoO and reduction peak at 400°C could be assigned to CoO to cobalt in Co$_3$O$_4$. This is consistent with the two-step reduction process reported in the literature 3. Pure SnO$_2$ catalyst displayed a overlapping reduction peaks at 480 ~
760 °C, the peak may be attributed to the reduction of SnO$_2$ to SnO, then to tin4,5.

![Fig. S3. H$_2$-TPR spectra of SnO$_2$, Sn-Co-O, and Co$_3$O$_4$ catalysts.](image)

With regard to Sn-Co-O catalysts, there were two overlapping reduction peaks in low temperature range (300°C-400°C) and high temperature range (500°C-700°C) respectively. The low temperature range peak can be attributed to the reduction of Co$_3$O$_4$ and the peak at high temperature range reduction could be ascribed to the reduction of SnO$_2$. Compared with pure Co$_3$O$_4$ catalyst, the reduction peak of Sn-Co-O at low-temperature range shift to high temperature and became weaker with increasing Sn content, indicating that doping of Sn affected the redox property of Co$_3$O$_4$ 6. Comparatively, the peak attributing to reduction of SnO$_2$ shifted to lower temperature on Sn-Co-O catalyst than that on SnO$_2$, indicating the redox property was enhanced on these sample. On the other hand, superior NO oxidation activity was obtained over the Sn(0.75)-Co-O catalyst, indicating that excellent redox property might be not essential in NO oxidation. The NO adsorption behavior is also important in NO oxidation over Sn-Co-O catalysts.
6. In-situ DRIFTS study

![In-situ DRIFTS spectra of Sn(0.25)-Co-O (a) and Sn(0.5)-Co-O (b) after NO+O\textsubscript{2} adsorption.](image)

According to previous studies, the peaks attributed to bridged bidentate nitrates (at 1616 cm-1), monodentate nitrates (at 1560 cm-1 and 1545 cm-1), bridging nitrates (at 1003-1008 cm-1), and nitrite species (at 1286 cm-1) could be found over two catalysts.7-9 The peaks appeared at 1245-1270 cm-1 could be attributed to nitrites/ HONO species.10, 11 Raising the temperature from 100 to 350 °C, the intensity of nitrites decreased rapidly, while nitrates species decreased
continuously and was totally eliminated at 350 °C over Sn(0.5)-Co-O catalyst.

![Fig. S5. In-situ DRIFTS spectra of Sn(0.75)-Co-O after NO adsorption.](image)

7. NO oxidation stability test

![Fig. S6 Stability test of NO oxidation performance over Sn(0.75)-Co-O catalyst.](image)

The NO oxidation stability test with a period of 720 min over Sn(0.75)-Co-O was performed
and the results are shown in Fig. S6. It could be seen the catalytic activity was stable within the test period.

REFERENCES