Electronic Supporting Information

Contents

- Figures S1-S4, the effect of temperature, water, time and [L]/[Rh] on hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$/PPh$_2$(NC$_4$H$_4$)$_2$ at 10 bar of syngas, 2 bar of 1-butene and 80 °C.
- Fig.S5. The effect of water on the hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$ modified with different ligands at 80 °C and 10 bar of syngas using autoclave 50 mL.
- 1H, 13C NMR data for post-reaction mixture.
- Table and Fig.S6. The effect of pressure on hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$ at 8, 6 and 4 bar, 80 °C in autoclave 100 mL. and the compare n/iso according to NMR and Fid-GC.
- Fig. S7- S9. 1H NMR (CDCl$_3$) of post-reaction mixture after the hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$ at 8, 6 and 4 bar, 80 °C in autoclave 100 mL.
- Fig. S10- S11. 31P NMR (CDCl$_3$) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)$_2$/P(NC$_4$H$_4$)$_3$ and Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$, respectively, without(a) and with(b) addition little amount of water to NMR sample.
- Fig.S12. 31P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)$_2$/PPh$_2$(NC$_4$H$_4$)$_2$ with addition, little amount of water to NMR sample.

![Fig. S1](image)

Fig. S1. The effect of temperature on hydroformylation of 1-butene
Fig. S2. Effect of water on hydroformylation of 1-butene in toluene

Fig. S3. Effect of time on hydroformylation of 1-butene in toluene
Fig. S4. Effect of [L]/[Rh] ratio on hydroformylation of 1-butene

Fig. S5. The effect of water on the hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$ modified with different ligands at 80 °C and 10 bar of syngas using autoclave 50 mL.

1H, 13C NMR data for post-reaction mixture:

1-butene: 1H NMR (500 Hz, CDCl$_3$) $\delta(=\text{CH})$ 5.78 ppm (ddddd, 6.17, 6.81, 10.3, 17.1 Hz); $\delta(=\text{CH}_2)$ 4.9 ppm (dd, 17.2, 1.87Hz); $\delta(=\text{CH}_2)$ 4.82 ppm (dd, 10.2, 2Hz); $\delta(\text{CH}_3)$ 1.2 ppm (d, 7.24 Hz); 13C NMR (500 Hz, CDCl$_3$): 140.43, 113.04, 26.63, 17.72.
2-butene: 1H NMR (500 Hz, CDCl$_3$) δ(=CH$_2$) 5.32 ppm (ddd, 1.4, 4.8, 3.36Hz); δ(=CH$_2$) 5.36 ppm (ddd, 3.1, 7.9, 0.91Hz)

Pentanal: 1H NMR (500 Hz, CDCl$_3$): δ(CHO) 9.62 ppm (t, 1.86 Hz); δ(CH$_2$) 2.29 ppm (ddd, 1.85, 7.38, 14.75 Hz); δ(CH$_2$) 2.29 ppm (ddd, 1.85 Hz); δ(CH$_2$) 1.5 ppm (ddd, 7.51Hz); δ(CH$_2$) 1.26 ppm (dddd, 7.57Hz); δ(CH$_3$) 0.83 ppm (t, 7.46 Hz); 13C NMR (500 Hz, CDCl$_3$): 202.5, 43.53, 24.1, 22.24, 13.68.

2-methylbutanal: 1H NMR (500 Hz, CDCl$_3$): δ(CHO) 9.51 ppm (d, 1.88 Hz); 13C NMR (500 Hz, CDCl$_3$): 204.98, 47.67, 23.46, 12.71, 11.21.

Table S1 the effect of pressure of syngas on n/iso ratio of hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$

<table>
<thead>
<tr>
<th>Entry</th>
<th>P, bar</th>
<th>Aldehydes, mol</th>
<th>n/iso (Fid-GC)</th>
<th>n/iso(NMR)</th>
<th>TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>0.018</td>
<td>22.5</td>
<td>27.5</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.017</td>
<td>24.2</td>
<td>34.4</td>
<td>566.7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.007</td>
<td>20</td>
<td>38.8</td>
<td>233.3</td>
</tr>
</tbody>
</table>

Reaction condition: [Rh] = 1.5 x 10$^{-5}$mol, [L]/[Rh] = 13, P$_1$-Butene = 2 bar, P$_{H2:CO}$ = 1:1, toluene (0.5 ml), cyclohexane (0.25 mL), t = 2h, T = 80°C.

Fig.S6. The effect of pressure on hydroformylation of 1-butene catalyzed by Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$
Fig. S7. 1H NMR (CDCl$_3$) of post-reaction mixture after the hydroformylation of 1-butene at 8 bar, 80 °C.
Fig.S8. 1H NMR (a) and 13C NMR (b) spectra (CDCl$_3$) of post-reaction mixture after the hydroformylation of 1-butene at 6 bar, $80 \, ^\circ$C.

Fig.S9. 1H NMR (CDCl$_3$) of post-reaction mixture after the hydroformylation of 1-butene at 4 bar, $80 \, ^\circ$C.
Fig. S10. 31P NMR (CDCl$_3$) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)$_2$/ P(NC$_4$H$_4$)$_3$, without(a) and with(b) addition little amount of water to NMR sample.
Fig. S11. 31P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)$_2$/PPh(NC$_4$H$_4$)$_2$, without (a) and with (b) addition little amount of water to NMR sample.
Fig.S12. 31P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)$_2$/PPh$_2$(NC$_4$H$_4$) with addition, little amount of water to NMR sample.