Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Nanolayered manganese oxide: Insights from inorganic electrochemistry[†]

Mohammad Mahdi Najafpour,^{a,b*} Navid Jameei Moghaddam,^a Seyedeh Maedeh Hosseini[‡],^a Sepideh Madadkhani[‡],^a Małgorzata Hołyńska,^c Somayeh Mehrabani,^a Robabeh Bagheri^d and Zhenlun Song^d

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran ^bCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^cFachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

^dSurface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201, China

*Corresponding author; Phone: (+98) 24 3315 3201; E-mail: <u>mmnajafpour@iasbs.ac.ir</u>

‡These authors contributed equally to the work.

Figure S1 XRD diffractograms for the $Ca_2Mn_3O_8$ (reference code: 01-073-2290) (red) and Mn-Ca oxides (black) calcined at 600 °C.

Figure S2 XRD diffractograms for the $Ca_2Mn_3O_8$ (reference code: 01-073-2290) (red) and Mn-Ca oxides (black) calcined at 700 °C.

Figure S3 XRD diffractograms for $H_{1.63}K_{0.37}Mn_8O_{16}$ ·24 H_2O (reference code: 00-049-0677) (red) and Mn-K oxides (black) calcined at 400 °C.

Figure S4 XRD diffractograms for cryptomelane (KMn_8O_{16} , reference code: 00-006-0547) (red) and Mn-K oxides (black) calcined at 500 °C.

Figure S5 XRD diffractograms for cryptomelane (KMn_8O_{16} , reference code: 00-006-0547) (red) and Mn-K oxides (black) calcined at 600 °C.

Figure S6 XRD diffractograms for cryptomelane (KMn_8O_{16} , reference code: 00-006-0547) (red) and Mn-K oxides (black) calcined at 700 °C.

Figure S7 CV for different Mn oxides. 20 μ L of Mn oxides in water (1 mg/mL) was dripped on the FTO electrode and dried at 60 °C. Then, 10 μ L of 0.5 wt % Nafion solution was cast on the surface of the FTO electrode (1.0 cm²). A three-electrode system includes an FTO slide, Pt foil as counter-electrode and Ag|AgCl|KCl_{sat} as reference electrodes were applied for investigation of the electrochemical properties of the catalyst (room temperature, LiClO₄ (0.25 M), pH=6.3 the scan rate was 50 mV.s⁻¹). The calcination temperature for layered Mn oxide (Mn-Ca oxide) was 300 °C. Other Mn oxides were purchased from the Sigma-Aldrich Company.

Figure S8 The effect of different calcination temperatures on CVs of nanolayered Mn-Ca oxide. 30 μ L of Mn oxide dispersed in water (1mg/mL) was dripped on the FTO electrode and dried at 60 °C. Then, 10 μ L of 0.5 wt % Nafion solution was cast on the surface of the FTO electrode (1.0 cm²). A three-electrode system includes an FTO slide, Pt foil as counter and Ag|AgCl|KCl_{sat} as reference electrodes and was applied for investigation of the electrochemical properties of the catalyst (room temperaure, LiClO₄ (0.25 M), pH=6.3; scan rate: 50 mV.s⁻¹).

Figure S9 The effect of different calcination temperatures on CVs of nanolayered Mn-K oxide on FTO. A three-electrode system includes an FTO slide, Pt foil as counter-electrode and Ag|AgCl|KCl_{sat} as reference electrode. This system was applied for investigation of the electrochemical properties of the catalyst (room temperaure, LiClO₄ (0.25 M), pH=6.3; scan rate: 50 mV.s⁻¹).

Figure S10 The effect of different scan rates for CVs of nanolayered Mn-K oxide on FTO. A three-electrode system includes an FTO slide, Pt foil as counter-electrode and Ag|AgCl|KCl_{sat} as reference electrode (1.0 cm²). This system was applied for investigation of the electrochemical properties of the catalyst (room temperaure, LiClO₄ (0.25 M), pH=6.3). Nanolayered Mn-Ca oxide/Nafion is not very stable under these conditions.

Figure S11 SEM images of electrodeposited Mn oxide on FTO from $Mn(ClO_4)_2$ (300.0 mg in 20.0 mL water) at 1.2V vs. Ag|AgCl|KCl_{sat}; counter-electrode: Pt foil and under chronoamperometric condition.

Figure S12 SEM images of electrodeposited Mn oxide on FTO from $Mn(ClO_4)_2$ (300.0 mg in 20.0 mL aqueous LiClO₄ (0.25 M)) at 1.2V vs. Ag|AgCl|KCl_{sat}; counter-electrode: Pt foil and under chronoamperometric condition.

Figure S13 SEM images of electrodeposited Mn oxide on FTO from $Mn(ClO_4)_2$ (300.0 mg in 20.0 mL aqueous LiClO₄ (0.25 M)) under cyclic voltammetric condition (-0.5-1.6 vs. Ag|AgCl|KCl_{sat}; counter-electrode: Pt foil).

Figure S14 The CV of FTO in the presence of HNO_3 (0.1 M) (black) and CAN (red), and Mn-K oxide on FTO in the presence of HNO_3 (0.1 M) (gray) and CAN (blue). A threeelectrode system includes an FTO slide, Pt foil as counter-electrode and Ag|AgCl|KCl_{sat} as reference electrode. This system was applied for investigation of the electrochemical properties of the catalyst (scan rate = 100 mV.s⁻¹, room temperature, LiClO₄ (0.25 M)). Nanolayered Mn-Ca oxide/nafion is not very stable under these conditions.

Table S1 Onset potentials for water oxidation by layered Mn-Ca oxides (LiClO₄ (0.25 M), pH=6.3). A three-electrode system includes an FTO slide, Pt foil as counter-electrode and Ag|AgCl|KCl_{sat} as reference electrode (1.0 cm²). This system was applied for investigation of the electrochemical properties of the catalyst (room temperaure, LiClO₄ (0.25 M), pH=6.3).

Compounds	Onset potentials (vs.
MnO	1.53
Mn ₃ O ₄	1.50
Mn ₂ O ₃	1.49
MnO ₂	1.47
Layered Mn oxide (60)	1.51
Layered Mn	1.49
	1 40
	1.40
Layered Mn oxide (300)	1.46
Layered Mn oxide (400)	1.48
Layered Mn oxide (500)	1.52
Layered Mn oxide (600)	1.51
Layered Mn oxide (700)	1.5