Supporting Information

Table of Contents

I. Characterization results of catalysts... S1

II. NMR peaks and MS-EI of all products..S4

III. NMR spectra of all products...S10
I. Characterization results of catalysts

Figure S1. BJH Desorption patterns of prepared catalysts with different kinds of metal chloride.

Figure S2. Energy dispersive X-ray spectroscopy (EDX) elemental line scans over different catalysts.
Figure S3. HR-TEM of catalyst samples.

Figure S4. (SAED) patterns of catalyst samples.

Figure S5. Typical XPS survey scans of catalyst samples.
Figure S6. Characterization data of Pd/C-py-R catalyst sample.
II. NMR peaks and MS-EI of all products

![Structure c1]

White solid; Mp = 124~126 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\) \(\delta\) 7.36 – 7.31 (m, 6H), 7.22 – 7.15 (m, 6H), 7.11 (m, \(J = 9.2, 4.7, 3.1\) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\) \(\delta\) 147.99, 129.31, 124.28, 122.78.

MS-EI calculated for 245.1204, found 245.1226

![Structure c2]

Yellowish solid; Mp = 65~67 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\) \(\delta\) 7.30 (t, \(J = 7.7\) Hz, 4H), 7.15 (d, \(J = 7.8\) Hz, 6H), 7.12 – 7.02 (m, 4H), 2.40 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\) \(\delta\) 148.13, 145.36, 132.79, 130.01, 129.20, 125.03, 123.70, 122.31, 20.91. MS-EI calculated for 259.1361, found 259.1338

![Structure c3]

White solid; Mp = 128~131 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\) \(\delta\) 7.33 (m, \(J = 7.2, 1.9\) Hz, 4H), 7.26 – 7.14 (m, 5H), 7.14 – 6.98 (m, 4H), 6.95 (t, \(J = 6.0\) Hz, 1H), 2.37 (d, \(J = 5.8\) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\) \(\delta\) 148.11, 147.94, 139.15, 129.27, 129.17, 125.12, 124.20, 123.82, 122.61, 121.69, 21.53. MS-EI calculated for 259.1361, found 259.1327

![Structure c4]

White solid; Mp = 53~55 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\) \(\delta\) 7.29 – 7.19 (m, 7H), 7.17 – 7.14 (m, 1H), 7.01 (d, \(J = 7.7\) Hz, 4H), 6.95 (t, \(J = 7.3\) Hz, 2H), 2.07 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\) \(\delta\) 147.53,
Yellowish solid; Mp = 127~129 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.31 (m, 7H), 7.15 – 7.11 (m, 6H), 1.44 (s, 18H). 13C NMR (101 MHz, CDCl$_3$) δ 148.30, 145.53, 145.33, 129.39, 126.21, 123.91, 123.51, 120.51, 34.27, 31.60. MS-EI calculated for 357.2457, found 357.2434

White solid; Mp = 106~109 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.09 – 7.05 (m, 2H), 6.93 (m, J = 4.7, 3.6 Hz, 6H), 6.87 (d, J = 8.5 Hz, 4H), 6.81 (t, J = 7.3 Hz, 1H), 2.18 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 148.40, 145.60, 132.35, 129.94, 129.13, 124.57, 123.08, 121.83, 20.89. MS-EI calculated for 273.1517, found 273.1541

Yellowish solid; Mp = 114~116 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.01 (d, J = 8.3 Hz, 6H), 6.94 (d, J = 8.4 Hz, 6H), 2.27 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 145.82, 130.62, 129.04, 123.15, 20.24. MS-EI calculated for 287.1674, found 287.1703

S5
Yellowish solid; Mp = 51~53 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.08 – 6.94 (m, 9H), 6.88 – 6.72 (m, 3H), 2.28 (s, 6H), 2.21 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 148.36, 145.73, 138.93, 132.18, 129.91, 128.99, 124.51, 123.93, 122.90, 120.54, 21.55, 20.91. MS-EI calculated for 287.1674, found 287.1681

Yellow solid; Mp = 104~106 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.66 (t, \(J = 7.3\) Hz, 2H), 7.61 – 7.54 (m, 2H), 7.52 – 7.45 (m, 2H), 7.44 – 7.30 (m, 5H), 7.30 – 7.17 (m, 6H), 7.17 – 7.07 (m, 2H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 147.81, 147.29, 140.75, 135.25, 129.39, 128.84, 127.88, 126.90, 126.75, 124.52, 124.04, 123.03. MS-EI calculated for 321.1517, found 321.1532

Yellow solid; Mp = 144~147 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.70 (m, \(J = 7.1, 1.1\) Hz, 2H), 7.64 – 7.49 (m, 4H), 7.42 (m, \(J = 7.4, 5.8\) Hz, 1H), 7.36 – 7.00 (m, 10H), 2.47 (m, \(J = 8.3, 3.4\) Hz, 6H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 147.77, 145.43, 140.92, 134.33, 132.67, 130.07, 128.84, 127.75, 126.71, 124.84, 122.87, 20.98. MS-EI calculated for 349.1830, found 349.1853

White solid; Mp = 145~147 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.94 (d, \(J = 8.4\) Hz, 5H), 6.88 (t, \(J = 6.4\) Hz, 5H), 6.84 – 6.78 (m, 2H), 2.20 (s, 6H), 2.16 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 169.76, 145.99, 145.42, 132.48, 129.94, 124.45, 123.59, 122.03, 21.14, 20.83. MS-EI calculated for 331.1572, found 331.1549
White solid; Mp = 52~54 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.34 (m, $J = 8.5, 3.2, 1.4$ Hz, 4H), 7.16 – 7.12 (m, 4H), 7.03 – 6.98 (m, 2H), 5.75 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 143.21, 129.41, 121.09, 117.93. MS-EI calculated for 169.0891, found 169.0872

Yellowish solid; Mp = 87~88 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (m, $J = 4.7, 2.8, 1.0$ Hz, 2H), 7.16 (d, $J = 8.0$ Hz, 2H), 7.10 – 7.06 (m, 4H), 6.96 (m, $J = 7.3, 2.6, 1.1$ Hz, 1H), 5.65 (s, 1H), 2.38 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 144.05, 140.39, 130.98, 129.92, 129.37, 120.37, 119.00, 116.96, 20.74. MS-EI calculated for 183.1048, found 183.1021

Yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.33 (m, $J = 11.8, 4.0$ Hz, 2H), 7.21 (d, $J = 8.3$ Hz, 1H), 7.15 – 7.11 (m, 2H), 7.02 – 6.93 (m, 3H), 6.83 (d, $J = 7.5$ Hz, 1H), 5.70 (s, 1H), 2.38 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 143.32, 143.15, 139.27, 129.37, 129.23, 121.95, 120.93, 118.60, 117.90, 115.01, 21.58. MS-EI calculated for 183.1048, found 183.1026

White solid; Mp = 134~137 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.34 (t, $J = 7.4$ Hz, 3H), 7.29 (d, $J = 7.3$ Hz, 1H), 7.23 (t, $J = 7.6$ Hz, 1H), 7.06 – 6.97 (m, 4H), 5.45 (s, 1H), 2.34 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 144.11, 141.30, 131.03, 129.38, 126.85, 122.12, 120.53, 119.00, 117.52, 17.96. MS-EI calculated for 183.1048, found 183.1068
White solid; Mp = 55°~57 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (m, $J = 16.2, 7.9$ Hz, 5H), 7.03 (m, $J = 22.2, 8.2$ Hz, 4H), 5.35 (s, 1H), 1.30 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 145.45, 145.20, 129.02, 125.97, 123.78, 123.40, 121.89, 34.27, 31.46. MS-EI calculated for 225.1517, found 225.1508

White solid; Mp = 76°~79 °C; 1H NMR (400 MHz, CDCl$_3$) δ 6.95 (t, $J = 9.7$ Hz, 4H), 6.86 (t, $J = 7.7$ Hz, 4H), 5.29 (s, 1H), 2.20 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 141.22, 129.85, 123.92, 117.99, 20.66. MS-EI calculated for 197.1204, found 197.1231

Yellowish solid; Mp = 131°~133 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.09 (dt, $J = 17.8, 8.8$ Hz, 3H), 6.99 (d, $J = 8.4$ Hz, 2H), 6.82 (d, $J = 7.6$ Hz, 2H), 6.70 (d, $J = 7.4$ Hz, 1H), 5.58 (s, 1H), 2.29 (d, $J = 4.3$ Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 143.95, 140.44, 139.17, 130.83, 129.84, 129.15, 121.23, 118.98, 117.59, 114.05, 21.53, 20.68. MS-EI calculated for 197.1204, found 197.1235

Yellowish solid; Mp = 109°~111 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 7.9$ Hz, 2H), 7.48 (s, 2H), 7.38 (d, $J = 7.6$ Hz, 2H), 7.30 ~ 7.25 (m, 3H), 7.10 (d, $J = 7.8$ Hz, 4H), 6.93 (d, $J = 7.3$ Hz, 1H), 5.72 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 142.94, 142.64, 140.92, 133.82, 129.47, 128.82, 128.04, 126.67, 126.61, 121.33, 118.20, 117.90. MS-EI calculated for 245.1204, found 245.1193
Yellowish solid; Mp = 132~135 °C; ^1H NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 7.46 – 7.44 (m, 2H), 7.40 – 7.36 (m, 2H), 7.25 (d, J = 7.0 Hz, 1H), 7.08 – 7.00 (m, 6H), 5.67 (s, 1H), 2.30 (s, 3H). ^13C NMR (101 MHz, CDCl₃) δ 143.51, 140.99, 138.81, 133.06, 129.22, 128.78, 127.82, 127.44, 126.51, 124.14, 119.23, 116.96, 20.78. MS-EI calculated for 259.1361, found 259.1347

White solid; Mp = 92~96 °C; ^1H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.1 Hz, 2H), 7.03 – 6.86 (m, 6H), 5.60 (s, 1H), 2.29 (s, 3H), 2.27 (s, 3H). ^13C NMR (101 MHz, CDCl₃) δ 170.02, 144.11, 141.85, 140.42, 131.02, 129.91, 122.23, 118.81, 117.73, 21.09, 20.68. MS-EI calculated for 241.1103, found 241.1127
III. NMR spectra of all products

Figure S7. 1HNMR of c1

Figure S8. 13CNMR of c1
Figure S9. 1HNMR of c2

Figure S10. 13CNMR of c2
Figure S11. 1HNMR of c3

Figure S12. 13CNMR of c3
Figure S13. 1HNMR of c4

Figure S14. 13CNMR of c4
Figure S15. 1HNMR of c5

Figure S16. 13CNMR of c5
Figure S17. 1HNMR of c6

Figure S18. 13CNMR of c6
Figure S19. 1HNMR of c7

Figure S20. 13CNMR of c7
Figure S21. 1HNMR of c8

Figure S22. 13CNMR of c8
Figure S23. 1HNMR of c9

Figure S24. 13CNMR of c9
Figure S27. 1HNMR of c11

Figure S28. 13CNMR of c11
Figure S29. 1HNMR of d1

Figure S30. 13CNMR of d1
Figure S31. 1HNMR of d2

Figure S32. 13CNMR of d2
Figure S33. 1HNMR of d3

Figure S34. 13CNMR of d3
Figure S35. 1HNMR of d4

Figure S36. 13CNR of d4
Figure S37. 1HNMR of d5

Figure S38. 13CNMR of d5
Figure S39. 1HNMR of d6

Figure S40. 13CNR of d6
Figure S41. 1HNMR of d7

Figure S42. 13CNR of d7
Figure S43. 1HNMR of d8

Figure S44. 13CNMR of d8
Figure S45. 1HNMR of d9

Figure S46. 13CNMR of d9
Figure S47. 1H NMR of d10

![HNMR of d10](image1)

Figure S48. 13C NMR of d10

![CNMR of d10](image2)