Chromium-substituted hematite powder as a catalytic material for photochemical and electrochemical water oxidation

Tomoki Kanazawa, Kazuhiko Maeda*

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

*To whom corresponding author should be addressed.

TEL: +81-3-5734-2239, FAX: +81-3-5734-2284

Email: maedak@chem.titech.ac.jp
Fig. S1 XPS spectra of (A) Fe 2p and (B) Cr 2p in Fe$_{2}$O$_{3}$, Fe$_{1.6}$Cr$_{0.4}$O$_{3}$, Fe$_{0.7}$Cr$_{1.3}$O$_{3}$ and Cr$_{2}$O$_{3}$.

Fig. S2 XPS spectra of (A) Fe 2p and (B) Cr 2p in Fe$_{1.6}$Cr$_{0.4}$O$_{3}$ before and after photochemical water oxidation.

Fig. S3 UV-visible diffuse reflectance spectra and absorbance spectrum of Fe$_{2-x}$Cr$_{x}$O$_{3}$ and [Ru(bpy)$_{3}$]SO$_{4}$ (in aqueous phosphate solution, 100 mM, pH 7.5).
Fig. S4 UV-vis absorbance spectra of the reactant solution after 50 min at +1.80 V (vs. RHE) electrolysis using Fe$_{2-x}$Cr$_x$O$_3$/FTO. Reaction condition is the same as Fig. 4. Black line is under similar condition but with 3–3.5 wt% H$_2$O$_2$ as a reductant.

Fig. S5 Current-voltage curves for Fe$_{2-x}$Cr$_x$O$_3$ electrodes in a phosphate buffer solution. Scan rate, 20 mV s$^{-1}$; Solution, phosphate aqueous solution (100 mM pH 7.5) containing 3–3.5 wt% of H$_2$O$_2$.

Electronic Supplementary Information
Electronic Supplementary Information

Fig. S6 Impedance spectra of Fe\(_{2-x}\)Cr\(_x\)O\(_3\) electrodes in a phosphate buffer solution recorded at +1.40 V in dark or under visible light irradiation (480 < \(\lambda\) < 500 nm). Solution, phosphate aqueous solution (100 mM pH 7.5) containing 3–3.5 wt% of H\(_2\)O\(_2\). Charge transfer resistance values after curve fitting are also shown.

Fig. S7 Impedance spectra of Fe\(_{2-x}\)Cr\(_x\)O\(_3\) electrodes in a phosphate buffer solution recorded at +1.80 V. Solution, phosphate aqueous solution (100 mM pH 7.5) without H\(_2\)O\(_2\).