Oxidation of the hexagonal $Mo_2C(101)$ Surface by H_2O dissociative adsorption

Xinxin Tian,^a Tao Wang,^b Haijun Jiao^{c*}

a) Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China; b) Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France; c) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany.

E-mail address: haijun.jiao@catalysis.de

Table of content

Table S1. Dissociation barriers (E_a , eV) and reaction energies (E_r , eV) of nH_2O and nOH on the Mo₂C(101) surface

Page S2

Table S2. Stepwise adsorption energies of OH and O at different coverage on the $Mo_2C(101)$ surface on	the
basis of H_2O dissociation and gaseous H_2 formation	Page S3
Fig. S1. The detailed H-bonding arrangement on the $Mo_2C(101)$ surface at different H_2O coverages	Page S4
Fig. S2. Structures of initial state (IS), transition state (TS) and final state (FS) of H ₂ O dissociation on the	Mo ₂ C
(101) surface	Page S4
Fig. S3. Structures of initial state (IS), transition state (TS) and final state (FS) of O+H ₂ O dissociation on t	:he Mo₂C
(101) surface	Page S5
Fig. S4. Structures of initial state (IS), transition state (TS) and final state (FS) of 2H ₂ O dissociation on t	he Mo ₂ C
(101) surface	Page S5
Fig. S5. Structures of initial state (IS), transition state (TS) and final state (FS) of 3H ₂ O dissociation on t	:he Mo ₂ C
(101) surface	Page S6
Fig. S6. Structures of initial state (IS), transition state (TS) and final state (FS) of 4H ₂ O dissociation on t	he Mo ₂ C
(101) surface	Page S7
Fig. S7. Structures of initial state (IS), transition state (TS) and final state (FS) of 5H ₂ O dissociation on t	:he Mo ₂ C
(101) surface	Page S8

	N	nH₂O → nOH + nH	Ea	Er	N	nOH →nO + nH	Ea	Er
1H ₂ O	1	$H_2O \rightarrow OH + H$	0.22	-0.96	2	ОН → О + Н	0.74	-0.16
(1/8ML)			[0.39]	[-0.90]			[0.90]	[-0.09]
O+H ₂ O	3	$O+H_2O \rightarrow O+OH+H$	0.54	-0.57	5	20H(I) → OH + O + H	0.79	0.02
			[0.71]	[-0.52]			[0.95]	[0.08]
	4	$O+H_2O \rightarrow 2OH$	0.15	-0.51	6	OH + O → 2O + H	0.78	-0.19
			[0.26]	[-0.52]			[0.95]	[-0.12]
2H ₂ O	7	$2H_2O \rightarrow H_2OOH + H$	-0.11	-0.94	9	20H(II) → OH + O + H	0.78	-0.14
(1/4ML)			[0.05]	[-0.82]			[0.94]	[-0.08]
	8	H₂OOH→ 2OH + H	0.59	-0.91	10	OH + O → 2O + H	0.78	-0.19
			[0.74]	[-0.89]			[0.95]	[-0.12]
3H ₂ O	11	$3H_2O \rightarrow 2H_2O + OH + H$	-0.07	-1.07	14	30H → 20H + 0 + H	0.83	0.06
(3/8ML)			[0.09]	[-1.02]			[0.98]	[0.13]
	12	$2H_2O + OH \rightarrow H_2O + 2OH$	0.45	-0.30	15	20H + O → OH + 2O	0.81	0.13
			[0.64]	[-0.21]			[0.97]	[0.20]
	13	$H_2O + 2OH \rightarrow 3OH + H$	0.58	-0.17	16	OH + 2O → 3O + H	0.99	0.25
			[0.74]	[-0.09]			[1.15]	[0.32]
4H ₂ O	17	$4H_2O \rightarrow 3H_2O + OH + H$	0.00	-0.86	21	40H → 30H + 0 + H	0.81	0.06
(1/2ML)			[0.15]	[-0.75]			[0.96]	[0.13]
	18	$3H_2O + OH \rightarrow 2H_2O + 2OH$	0.03	-0.77	22	30H + O → 2OH + 2O + H	0.87	0.17
			[0.19]	[-0.65]			[1.03]	[0.24]
	19	$2H_2O + 2OH \rightarrow H_2O + 3OH$	0.45	-0.29	23	20H + 20 → OH + 30 + H	1.05	0.42
			[0.58]	[-0.24]			[1.20]	[0.49]
	20	H₂O + 3OH → 4OH + H	0.35	-0.41	24	OH + 3O → 4O + H	1.08	0.46
			[0.51]	[-0.33]			[1.23]	[0.53]

Table S1. Dissociation barriers (E_a , eV) and reaction energies (E_r , eV) of nH_2O and nOH on the Mo₂C(101) surface (the values without ZPE correction are given in square brackets for comparison)

N: the numbering of elementary reaction in this work.

Table S2. Stepwise adsorption energies (in eV) of OH and O at different coverage on the $Mo_2C(101)$ surface on the basis of H_2O dissociation and gaseous H_2 formation (the values without ZPE correction are given in square brackets for comparison)

θ	$\Delta E_{ads}(OH)$	$\Delta E_{ads}(O)$
1/8 ML	-1.10 [-1.05]	-0.69 [-0.47]
1/4 ML	-1.06 [-1.01]	-0.60 [-0.37]
3/8 ML	-0.92 [-0.86]	-0.26 [-0.04]
1/2 ML	-0.79 [-0.74]	-0.21 [0.01]
5/8 ML	-0.07 [0.00]	-0.04 [0.15]
3/4 ML	-0.05 [0.02]	0.09 [0.30]
7/8 ML	0.04 [0.08]	0.47 [0.70]
1 ML	0.43 [0.56]	0.24 [0.44]

Fig. S1. The detailed H-bonding arrangement on the $Mo_2C(101)$ surface at different H_2O coverages

Fig. S2. Structures of initial state (IS), transition state (TS) and final state (FS) of H_2O dissociation on the Mo_2C (101) surface

Fig. S3. Structures of initial state (IS), transition state (TS) and final state (FS) of $O+H_2O$ dissociation on the Mo_2C (101) surface

Fig. S4. Structures of initial state (IS), transition state (TS) and final state (FS) of $2H_2O$ dissociation on the Mo_2C (101) surface

Fig. S5. Structures of initial state (IS), transition state (TS) and final state (FS) of $3H_2O$ dissociation on the Mo_2C (101) surface

Fig. S6. Structures of initial state (IS), transition state (TS) and final state (FS) of 4H₂O dissociation on the Mo₂C (101) surface

Fig. S7. Structures of initial state (IS), transition state (TS) and final state (FS) of 5H₂O dissociation on the Mo₂C (101) surface

